Стороны основания прямого параллелепипеда равны 3 и 5 см. угол между ними равен 60 градусов, большая диагональ параллелепипеда равна 10 см. найдите площадь полной поверхностии объём параллелепипеда
См. рисунок в приложении. Прямой параллелепипед, значит в основании параллелограмм со сторонами а и b, боковые ребра H перпендикулярны плоскости основания. Острый угол параллелограмма обозначим α.
Большая диагональ параллелограмма является проекцией большей диагонали параллелепипеда (на рисунке изображена синим цветом).
По теореме косинусов большая диагональ параллелограмма d²=a²+b²-2·a·b·cos(180°-α) d²=3²+5²-2·3·5·cos120° d²=9+25-2·3·5·(-1/2) d²=9+25+15=49 d=7 см
По теореме Пифагора Н²=10²-7²=100-49=51 Н=√51 см
S(полн.)=S(бок.)+2S(осн.)=Р(осн.)·Н+2·a·b·sinα=2·(a+b)·H+2·a·b·sinα= =2·(3+5)·√51+2·3·5·(√3/2)=(16√51+15√3) кв. см.
Прямой параллелепипед, значит в основании параллелограмм со сторонами а и b, боковые ребра H перпендикулярны плоскости основания.
Острый угол параллелограмма обозначим α.
Большая диагональ параллелограмма является проекцией большей диагонали параллелепипеда (на рисунке изображена синим цветом).
По теореме косинусов большая диагональ параллелограмма
d²=a²+b²-2·a·b·cos(180°-α)
d²=3²+5²-2·3·5·cos120°
d²=9+25-2·3·5·(-1/2)
d²=9+25+15=49
d=7 см
По теореме Пифагора
Н²=10²-7²=100-49=51
Н=√51 см
S(полн.)=S(бок.)+2S(осн.)=Р(осн.)·Н+2·a·b·sinα=2·(a+b)·H+2·a·b·sinα=
=2·(3+5)·√51+2·3·5·(√3/2)=(16√51+15√3) кв. см.
О т в е т.(16√51+15√3) кв. см.