Площадь равностороннего треугольника АВС равна Sabc= (√3/4)*а². С другой стороны, Sabc=Sabp+Sacp+Sbcp = (1/2)*AB*PF+(1/2)*BC*PD+(1/2)*AC*PE = (1/2)*a*(PF+PD+PE). Следовательно, (√3/4)*а² = (1/2)*a*(PF+PD+PE). Итак, (PF+PD+PE)= (√3/2)*а. Попробуем найти, чему же равна сумма (BD+CE+AF). Применяя теорему Пифагора, имеем: BD²+CE²+AF² =(BP²-PD²)+ (СP²-PE²)+(AP²-PF²) (1) DC²+AE²+FB² =(CP²-PD²)+ (AP²-PE²)+(BP²-PF²) (2). Раскроем скобки и увидим, что оба выражения (1) и (2) РАВНЫ (равны значению: BP²+СP²+AP²-PF²-PD²-PE²). Сторона треугольника равна а. Тогда DC²+AE²+FB² =(а-BD)²+(а-CE)²+(а-AF)²= a²-2a*BD+BD²+a²-2a*CE+CE²+a²-2a*AF+AF²= 3a²-2a(BD+CE+AF)+(BD²+CE²+AF²). Отсюда 2a*(BD+CE+AF) = 3a²+(BD²+CE²+AF²) - (DC²+AE²+FB²). Но выше мы доказали, что (BD²+CE²+AF²) = (DC²+AE²+FB²). Тогда 2a(BD+CE+AF)= 3a². Значит (BD+CE+AF)=(3/2)*а. (или равно полупериметру треугольника (3*а)/2). Отношение (PF+PD+PE)/(BD+CE+AF)= (√3/2)*а/(3/2)*а =√3/3.
Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и площади боковой поверхности. Для ответа на вопрос задачи нужно найти высоту фигуры. Известна площадь большего диагонального сечения АСС₁А₁. S АСС₁А₁=AC*СС₁=63 см² Параллелепипед прямой, рёбра перпендикулярны основанию ⇒ СС₁=высота параллелепипеда. АС найдем из треугольника АВС по т. косинусов. Сумма углов при одной из сторон параллелограмма равна 180°⇒ угол АВС=120° АС²=АВ²+ВС² -2*AB*BC*cos120° АС²=9+25- 30*(-1/2) АС²=49 АС=7см Тогда СС1=S AA1C1C:AC=63:7=9 см
Формула площади параллелограмма через стороны и угол между ними
S=a•b•sinα
Площадь двух оснований =2•S(АВСD)=AB•AD•sin60°=15√3
S полная=15√3+2•(3+5)*9=(15√3+144 )cм² или приближённо 170 см²
С другой стороны, Sabc=Sabp+Sacp+Sbcp = (1/2)*AB*PF+(1/2)*BC*PD+(1/2)*AC*PE = (1/2)*a*(PF+PD+PE). Следовательно,
(√3/4)*а² = (1/2)*a*(PF+PD+PE).
Итак, (PF+PD+PE)= (√3/2)*а.
Попробуем найти, чему же равна сумма (BD+CE+AF).
Применяя теорему Пифагора, имеем:
BD²+CE²+AF² =(BP²-PD²)+ (СP²-PE²)+(AP²-PF²) (1)
DC²+AE²+FB² =(CP²-PD²)+ (AP²-PE²)+(BP²-PF²) (2).
Раскроем скобки и увидим, что оба выражения (1) и (2) РАВНЫ
(равны значению: BP²+СP²+AP²-PF²-PD²-PE²).
Сторона треугольника равна а. Тогда DC²+AE²+FB² =(а-BD)²+(а-CE)²+(а-AF)²=
a²-2a*BD+BD²+a²-2a*CE+CE²+a²-2a*AF+AF²=
3a²-2a(BD+CE+AF)+(BD²+CE²+AF²).
Отсюда 2a*(BD+CE+AF) = 3a²+(BD²+CE²+AF²) - (DC²+AE²+FB²).
Но выше мы доказали, что (BD²+CE²+AF²) = (DC²+AE²+FB²). Тогда 2a(BD+CE+AF)= 3a².
Значит (BD+CE+AF)=(3/2)*а. (или равно полупериметру треугольника (3*а)/2).
Отношение (PF+PD+PE)/(BD+CE+AF)= (√3/2)*а/(3/2)*а =√3/3.
Для ответа на вопрос задачи нужно найти высоту фигуры.
Известна площадь большего диагонального сечения АСС₁А₁.
S АСС₁А₁=AC*СС₁=63 см²
Параллелепипед прямой, рёбра перпендикулярны основанию ⇒
СС₁=высота параллелепипеда.
АС найдем из треугольника АВС по т. косинусов.
Сумма углов при одной из сторон параллелограмма равна 180°⇒
угол АВС=120°
АС²=АВ²+ВС² -2*AB*BC*cos120°
АС²=9+25- 30*(-1/2)
АС²=49
АС=7см
Тогда СС1=S AA1C1C:AC=63:7=9 см
Формула площади параллелограмма через стороны и угол между ними
S=a•b•sinα
Площадь двух оснований =2•S(АВСD)=AB•AD•sin60°=15√3
S полная=15√3+2•(3+5)*9=(15√3+144 )cм² или приближённо 170 см²