В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ziatiok2016p074n4
ziatiok2016p074n4
29.01.2023 04:55 •  Геометрия

Стороны параллелограмма равны 2 и 4, а диагонали относятся как √3: √7. найдите площадь параллелограмма

Показать ответ
Ответ:
mkovalenko730
mkovalenko730
28.06.2020 18:30
Параллелограмм ABCD. 
По теореме косинусов в треугольнике АВD квадрат стороны ВD (диагональ параллелограмма) равен: BD² = AB²+AD²-CosA.
По теореме косинусов в треугольнике АCD квадрат стороны AC (диагональ параллелограмма) равен: AC² = AD²+DC²-Cos(180°-A). Заметим, что DC=АВ =2(стороны параллелограмма), угол <D = 180° - <A (углы при основании параллелограмма) и Cos(180°-A)= -CosA. Имеем:
BD² = AB²+AD²-CosA = 20-16CosA.
AC² = AD²+DC²-Cos(180°-A) = 20+16CosA.
BD/AC = √3/√7(дано) Тогда BD²/AC² =3/7. Подставляем значения и получаем:
CosA = 0,5. Значит <A = 60°. Формула площади параллелограмма: S=a*b*SinA = 8*0,866 = 6,928.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота