По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.
Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.