Стороны параллелограмма равны 70 см и 56 см.
От вершины тупого угла к большой стороне проведён перпендикуляр, который делит сторону на две части, одна из которых равна 42 см.
Определи расстояние между вершинами тупых углов.
1. Сколько ответов имеет задание?
Всегда только один ответ
Иногда возможны два ответа
Всегда два ответа
2. Если получилось два ответа, введи их в порядке возрастания, округленными до сотых. Если второго ответа нет, введи во второе поле 0 .
Расстояние между вершинами тупых углов
(ответ округли до сотых):
см .. или ..см.
ответ: х = 8√2 .
Объяснение:
У рівнобічній трапеції KMNS KM = MN = x . Проведемо MH⊥KS
i NV⊥KS . ΔKMH = ΔSNV за гіпотенузою і гострим кутом .
∠KMH = 90° - 60° = 30° . Тому KH = 1/2 KM = 1/2 x ; KS = 1/2 x + x +
+ 1/2 x = 2x ; MH = KH* tg60° = 1/2 x * √3 = √3/2 * x .
S трап = ( MN + KS )* MH/2 = [ ( x + 2x )* √3/2 * x ]/2 = 96√3 ;
3x²/4 = 96 ;
x² = ( 96 * 4 )/3 ;
x² = 128 ;
x = √128 = 8√2 .
В - дь : х = 8√2 .
Кути трикутника — 35°, 35° і 110°.
Объяснение:
Якщо один із кутів рівнобедреного трикутника дорівнює 110 градусів, то це не кут при основі, бо кути при основі рівні, а двох кутів з градусною мірою 110° у трикутнику бути не може, бо сума кутів трикутника дорівнює 180°, а 110° + 110° = 220°, 220° > 180°. Отже, кут з градусною мірою 110° знаходится при вершині рівнобедреного трикутника, не торкаючись основи. Тоді один з кутів при основі візьмемо за х, і маємо рівняння — 110° + х + х = 180°. Розв'яжемо — 110° + х + х = 180°, 110° + 2х = 180°, 2х = 180° - 110°, 2х = 70° , х = 70°/2, х = 35°. Отже, кути при основі — це 35° і 35°, а кут при вершині — 110°.