Вариант 2: Угол B тупой : B > 90° если b² >a² +c² Высота опускается на продолжения стороны с. Тогда c = c₂ - c₁ =√(b² - h²) -√(a² - h²) = √(2² - 1,2²) -√(1,5² - 1,2²) =1,6 -0,9 = 0,7 0,9 +1,6 =2,5 (см) .
P =a+b+c = 1,2 +1,5 +0,7 =3,4 (см ).
ответ : .5,2 см или 3, 4 см . * * * * * * * c₁ =a(c) = √(1,5² - 1,2²) = √(1,5 -1,2)(1,5+1.2)= √(0,3*0,3 *9) =0,3* 3 =0,9 ; c₂ = b(c) =√(2² - 1,2² ) =√(2-1,2)(2+1,2) = √(0,8*0,8*4) =08*2 =1,6. где a(c) и b(c) проекции сторон a и b на стороне
Объяснение: первым делом вычислим сколько кубиков получится. Очевидно, кол-во кубиков будет совпадать с объемом параллелепипеда, т.е 3×4×5=60.
Можно понять, что два окрашенных граней будет только у кубиков, которые были изначально у стыка двух граней параллелепипеда, исключая кубики на вершинах(у них будут 3 окрашенных граней).
Сделаем развертку и на каждой грани отметим все крайние квадратики кроме тех что у вершин, таких квадратиков у 3×4 грани будет 6, у 3×5 8 и у 4×5 10, домножив на 2 получаем что всего таких квадратиков на параллелепипеде 48 штук, именно они дают кубики с двумя окрашенными гранями, но так как 2 квадратика принадлежат одному кубику поделим 48 на 2 и получаем 24.
b = 2 (см) ;
h =1,2 (см) . * * * h =h₃ = h(c) разные обозначения * * *
(CH ⊥ AB )
p =(a+b+c) - ?
Вариант 1: ∠B < 90°.
c = c₁ +c₂ =√(a² - h²) +√(b² - h²) = √(1,5² - 1,2²) +√(2² - 1,2²) =√0,81 +√2,56 =
0,9 +1,6 =2,5 (см) .
P =a+b+c = 1,2 +1,5 +2,5 = 5,2 (см).
Вариант 2:
Угол B тупой : B > 90° если b² >a² +c²
Высота опускается на продолжения стороны с.
Тогда
c = c₂ - c₁ =√(b² - h²) -√(a² - h²) = √(2² - 1,2²) -√(1,5² - 1,2²) =1,6 -0,9 = 0,7
0,9 +1,6 =2,5 (см) .
P =a+b+c = 1,2 +1,5 +0,7 =3,4 (см ).
ответ : .5,2 см или 3, 4 см .
* * * * * * *
c₁ =a(c) = √(1,5² - 1,2²) = √(1,5 -1,2)(1,5+1.2)= √(0,3*0,3 *9) =0,3* 3 =0,9 ;
c₂ = b(c) =√(2² - 1,2² ) =√(2-1,2)(2+1,2) = √(0,8*0,8*4) =08*2 =1,6.
где a(c) и b(c) проекции сторон a и b на стороне
ответ: 2/5
Объяснение: первым делом вычислим сколько кубиков получится. Очевидно, кол-во кубиков будет совпадать с объемом параллелепипеда, т.е 3×4×5=60.
Можно понять, что два окрашенных граней будет только у кубиков, которые были изначально у стыка двух граней параллелепипеда, исключая кубики на вершинах(у них будут 3 окрашенных граней).
Сделаем развертку и на каждой грани отметим все крайние квадратики кроме тех что у вершин, таких квадратиков у 3×4 грани будет 6, у 3×5 8 и у 4×5 10, домножив на 2 получаем что всего таких квадратиков на параллелепипеде 48 штук, именно они дают кубики с двумя окрашенными гранями, но так как 2 квадратика принадлежат одному кубику поделим 48 на 2 и получаем 24.
Т.е шанс 24/60=2/5.