а) По условию MD перпендикулярна плоскости квадрата,
АD -проекция АМ на плоскость квадрата.
СD - проекция СМ на плоскость квадрата.
По т. о 3-х перпендикулярах МА⊥АВ, и МС⊥СВ.
Углы МАВ и МСВ прямые,⇒ ∆ МАВ и Δ МСВ прямоугольные.
б) В прямоугольном ∆ МDB катет DB равен MD:tg60°=6:√3=2√3
BD- гипотенуза прямоугольного равнобедренного ∆ ABD, его острые углы=45°.
АВ=ВD•sin45°=2√3•√2/2=√6
в) МD перпендикулярна плоскости квадрата по условию.
В ∆ АВD катет АD является проекцией наклонной АМ на плоскость квадрата.
Гипотенуза DB является проекцией МВ на плоскость квадрата.
АВ - общий катет ∆ АМВ и ΔΔ ADB. ⇒ ∆ ABD является проекцией ∆ MAB на плоскость квадрата.
в) В ∆ МАВ по т. о 3-х перпендикулярах наклонная МА⊥АВ,⇒
∆ МАВ прямоугольный.
Ѕ=AM•AB:2
Из ∆ АМD по т.Пифагора АМ=√(MD²²+AD²²)=√(36+6)=√42
S=√42•√6=√(7•6•6)=6√7 см²
1) площадь квадрата равна площади ромба
найдём площадь ромба
пусть у нас ромб АВСД, АВ=6 см
ВД=диагональ
О центр ромба
угол АВО=60
расмотрим треугольник АВО
он прямоугольнвый
АВ гипотенуза
ВО- катет
угол АВО=60 град
ВО=AB*cos60=6*1/2=3 см
площадь треугольника будет 1/2*ВО*AO
AO=AB*sin 60=6*корень(3)/2=3*корень 3
площадь ромба будет равно площади 4 таких треугольников, то мы получим, просто 2*BO*AO=18*корень(3)
а площадь квадрата будет, сторона в квадрате
тогда получим просто, что сорона равна корень 18*корень(3)=3*2^(0.5)*3^(0.25)=3 умножить на квадратный корень с 2 и умножить на корень 4 степени с 3
2)
этот треугольник равнобедренный, так как третий угол равен 180-90-45=45
один екатет основа
другой высота
площадь равна половине произведению высоты на основу
от тут мы знаем что каеты равны
по факту половина квадрата катета
катет равен=гипотенуза* cos45=10*корень (2)/2=5*корень с 2-ух
тогда имеем, что площадь равна 1/2 *(катет)^2=1/2(5^2*2)= 1/2*50=кв. 25 см
єто и есть ответ
а) По условию MD перпендикулярна плоскости квадрата,
АD -проекция АМ на плоскость квадрата.
СD - проекция СМ на плоскость квадрата.
По т. о 3-х перпендикулярах МА⊥АВ, и МС⊥СВ.
Углы МАВ и МСВ прямые,⇒ ∆ МАВ и Δ МСВ прямоугольные.
б) В прямоугольном ∆ МDB катет DB равен MD:tg60°=6:√3=2√3
BD- гипотенуза прямоугольного равнобедренного ∆ ABD, его острые углы=45°.
АВ=ВD•sin45°=2√3•√2/2=√6
в) МD перпендикулярна плоскости квадрата по условию.
В ∆ АВD катет АD является проекцией наклонной АМ на плоскость квадрата.
Гипотенуза DB является проекцией МВ на плоскость квадрата.
АВ - общий катет ∆ АМВ и ΔΔ ADB. ⇒ ∆ ABD является проекцией ∆ MAB на плоскость квадрата.
в) В ∆ МАВ по т. о 3-х перпендикулярах наклонная МА⊥АВ,⇒
∆ МАВ прямоугольный.
Ѕ=AM•AB:2
Из ∆ АМD по т.Пифагора АМ=√(MD²²+AD²²)=√(36+6)=√42
S=√42•√6=√(7•6•6)=6√7 см²
1) площадь квадрата равна площади ромба
найдём площадь ромба
пусть у нас ромб АВСД, АВ=6 см
ВД=диагональ
О центр ромба
угол АВО=60
расмотрим треугольник АВО
он прямоугольнвый
АВ гипотенуза
ВО- катет
угол АВО=60 град
ВО=AB*cos60=6*1/2=3 см
площадь треугольника будет 1/2*ВО*AO
AO=AB*sin 60=6*корень(3)/2=3*корень 3
площадь ромба будет равно площади 4 таких треугольников, то мы получим, просто 2*BO*AO=18*корень(3)
а площадь квадрата будет, сторона в квадрате
тогда получим просто, что сорона равна корень 18*корень(3)=3*2^(0.5)*3^(0.25)=3 умножить на квадратный корень с 2 и умножить на корень 4 степени с 3
2)
этот треугольник равнобедренный, так как третий угол равен 180-90-45=45
один екатет основа
другой высота
площадь равна половине произведению высоты на основу
от тут мы знаем что каеты равны
по факту половина квадрата катета
катет равен=гипотенуза* cos45=10*корень (2)/2=5*корень с 2-ух
тогда имеем, что площадь равна 1/2 *(катет)^2=1/2(5^2*2)= 1/2*50=кв. 25 см
єто и есть ответ