Стороны прямоугольника 48 см и 12 см.Найдите сторону равновеликого квадратаНайдите ширину прямоугольника, равновеликого данному, если его длина равна 36 см. Найдите сторону равновеликого квадрата
Найдите ширину прямоугольника, равновеликого данному, если его длина равна 36 см
диагонали ромба относятся как 5:12, значит и отношение их половин тоже равно 5:12, пусть длина половины одной диагонали равна 5х, длина половины другой диагонали 12х, диагонали ромба взаимно перпендикулярны.
Применим теорему Пифагора к треугольнику, образованному стороной и половинами двух диагоналей.
169=676, =, =4, х=2.
Длина одной диагонали 20см, длина другой диагонали 48см. Площадь ромба рана половине произведения его диагоналей.
S=1/2*20*48=480()
для x:
(x²-2•2x1 + 2²) -1•2² = (x-2)²-4
для y:
2(y²+2•5/2y + (5/2)²) -2•(5/2)² = 2(y+5/2)²-(25/2)
В итоге получаем:
(x-2)²+2(y+5/2)² = 55/2
Разделим все выражение на 55/2
(2/55)*(x-2)²+(4/55)*(y+(5/2))² = 1. Это уравнение эллипса.
Полуоси эллипса: а=√(55/2), в = √55/2.
Данное уравнение определяет эллипс с центром в точке:
C(2; -5/2)
Найдем координаты фокусов F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Итак, фокусы эллипса:F1((-1/2)*√55;0),
F2((1/2)*√55;0).
С учетом центра, координаты фокусов равны:
F1((-1/2)*√55+2;(-5/2)),
F2((1/2)*√55+2;(5/2)).
Тогда эксцентриситет будет равен:≈ 0,71.