Стороны треугольника 12, м 16 м ,и 18 м. найдите стороны треугольника подобного данному если его меньшая сторона равна большей стороне данного треугольника
Схема в общем-то не нужна. Достаточно начертить равносторонний треугольник. Всего одна формула, остальное рассуждения. Рассмотрим равносторонний ∆, у которого угол при вершине равен 60°. Углы при основании в равнобедренном ∆ равны. Сумма всех углов ∆ равна 180°. Сумма углов при основании равна 180°-60°=120°. А раз они равны, значит уголы при основании равны по 60°. Раз все углы равны, значит стороны тоже равны. Треугольник у нас равносторонний. Площадь равностороннего ∆ равна: S=(a^2•√3)/4=(36√3)/4=9√3
Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
Всего одна формула, остальное рассуждения.
Рассмотрим равносторонний ∆, у которого угол при вершине равен 60°. Углы при основании в равнобедренном ∆ равны. Сумма всех углов ∆ равна 180°. Сумма углов при основании равна 180°-60°=120°. А раз они равны, значит уголы при основании равны по 60°. Раз все углы равны, значит стороны тоже равны. Треугольник у нас равносторонний.
Площадь равностороннего ∆ равна:
S=(a^2•√3)/4=(36√3)/4=9√3