Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
Задача №3 решена Пользователем Nelle987 Ведущий Модератор Знаток
1. Высоты треугольника пересекаются в одной точке, значит высота, проведенная к стороне АС, так же проходит через точку Н. ΔВНА₁: ∠А₁ = 90°, по теореме Пифагора ВН = √(ВА₁² + А₁Н²) = √(16 + 9) = √25 = 5 ΔВА₁Н подобен ΔАВ₁Н по двум углам (∠ВА₁Н = ∠АВ₁Н = 90°, углы при вершине Н равны как вертикальные), ВН : АН = А₁Н : НВ₁ 5 : 4 = 3 : НВ₁ НВ₁ = 3 · 4 / 5 = 12 / 5 = 2,4 ВВ₁ = ВН + НВ₁ = 5 + 2,4 = 7,4
2. Точка пересечения серединных перпендикуляров треугольника - центр описанной окружности. Углы АОВ, ВОС и АОС - центральные, а углы АСВ, ВАС и АВС - вписанные, опирающиеся на одну дугу с соответствующим центральным. Вписанный угол равен половине центрального, опирающегося на ту же дугу.
3. Прямые, содержащие высоты треугольника пересекаются в одной точке. Тогда прямая, на которой лежит высота к стороне МК , так же проходит через точку О. OA – высота. S(МНКО) = S(MOK) - S(MHK) = 1/2 · (OH + HA) · MK - 1/2 · HA · MK = 1/2 · OH · MK S(МНКО) = 1/2 · 5 · 10 = 25
Nelle987 Ведущий Модератор Знаток
1. Высоты треугольника пересекаются в одной точке, значит высота, проведенная к стороне АС, так же проходит через точку Н.
ΔВНА₁: ∠А₁ = 90°, по теореме Пифагора
ВН = √(ВА₁² + А₁Н²) = √(16 + 9) = √25 = 5
ΔВА₁Н подобен ΔАВ₁Н по двум углам (∠ВА₁Н = ∠АВ₁Н = 90°, углы при вершине Н равны как вертикальные),
ВН : АН = А₁Н : НВ₁
5 : 4 = 3 : НВ₁
НВ₁ = 3 · 4 / 5 = 12 / 5 = 2,4
ВВ₁ = ВН + НВ₁ = 5 + 2,4 = 7,4
2. Точка пересечения серединных перпендикуляров треугольника - центр описанной окружности.
Углы АОВ, ВОС и АОС - центральные, а углы АСВ, ВАС и АВС - вписанные, опирающиеся на одну дугу с соответствующим центральным.
Вписанный угол равен половине центрального, опирающегося на ту же дугу.
∠ВАС = 1/2 ∠ВОС = 70°
∠АВС = 1/2 ∠АОС = 60°
∠АСВ = 1/2 ∠АОВ = 50°
3.
Прямые, содержащие высоты треугольника пересекаются в одной точке. Тогда прямая, на которой лежит высота к стороне МК , так же проходит через точку О.
OA – высота.
S(МНКО) = S(MOK) - S(MHK) = 1/2 · (OH + HA) · MK - 1/2 · HA · MK = 1/2 · OH · MK
S(МНКО) = 1/2 · 5 · 10 = 25