использованы формулы: площадь полной поверхности, площадь ромба, теорема Пифагора
Площадь полной поверхности параллелепипеда равна 2 площади основания + площадь боковой поверхности. Т. к. большая диагональ парал-да образует с боковым ребром угол 45 град., то большая диагональ ромба равна боковому ребру - получается прямоугольный треугольник с острым углом 45 град. след. он равнобедренный. Находим по теореме Пифагора. Пусть ребро - х, тогда х2 + х2 = (16 корней из 2) 2, 2 х х2=16 х 2, х2=256, х=16. Вторая диагональ ромба и боковое ребро равны 16 см. Площадь ромба ноходим, как половину произведения его диагоналей, а площадь боковой поверхности - периметр основания на боковое ребро. Сторона основания (по т. Пифогора) равна корню кв. из 6 в квадрате + 8 в квадрате (диагонали ромба перпендикулярны и делятся точкой пересечения пополам) 36+64=100, т. е. 10.
S=2Sосн.+Sбок.=2 х 1/2 х 12 х16 + 10 х 4 х 16 = 16 (12+40) = 832 кв. см.
Так как треугольник ABC - равнобедренный ( по условию ) медиана AH, равная 8 см, будет являться также высотой и биссектрисой. Треугольник ABH - прямоугольный, AB = 10 см,
AH = 8 см. По теореме Пифагора: BH ² = AB ² - AH ²
BH ² = 10 ² - 8 ² = 100 - 64 = 36
BH = 6 см.
BH - половина BC => BC = 12 см. Треугольник BCC1 - прямоугольный. По теореме Пифагора находим высоту призмы: CC1 ² = BC1 ² - BC ²
CC1 ² = 13 ² - 12 ² = 169 - 144 = 25.
CC1 = 5 см.
Объем призмы равен произведению площади основания на высоту: V = S * h
Высоту мы уже нашли - осталось найти площадь основания.
Треугольник ABC содержит в себе два прямоугольных треугольника => площадь ABC равна сумме площадей этих треугольников. S ABH = 8 * 6 * 0,5 = 24 см ². Площадь второго треугольника тоже равна 24. Значит S ABC = 24 + 24 = 48 см ².
V = 48 * 5 = 240 см ³.
P.S: Приношу извинения за кривой рисунок, рисовал в паинте :)
использованы формулы: площадь полной поверхности, площадь ромба, теорема Пифагора
Площадь полной поверхности параллелепипеда равна 2 площади основания + площадь боковой поверхности. Т. к. большая диагональ парал-да образует с боковым ребром угол 45 град., то большая диагональ ромба равна боковому ребру - получается прямоугольный треугольник с острым углом 45 град. след. он равнобедренный. Находим по теореме Пифагора. Пусть ребро - х, тогда х2 + х2 = (16 корней из 2) 2, 2 х х2=16 х 2, х2=256, х=16. Вторая диагональ ромба и боковое ребро равны 16 см. Площадь ромба ноходим, как половину произведения его диагоналей, а площадь боковой поверхности - периметр основания на боковое ребро. Сторона основания (по т. Пифогора) равна корню кв. из 6 в квадрате + 8 в квадрате (диагонали ромба перпендикулярны и делятся точкой пересечения пополам) 36+64=100, т. е. 10.
S=2Sосн.+Sбок.=2 х 1/2 х 12 х16 + 10 х 4 х 16 = 16 (12+40) = 832 кв. см.
Так как треугольник ABC - равнобедренный ( по условию ) медиана AH, равная 8 см, будет являться также высотой и биссектрисой. Треугольник ABH - прямоугольный, AB = 10 см,
AH = 8 см. По теореме Пифагора: BH ² = AB ² - AH ²
BH ² = 10 ² - 8 ² = 100 - 64 = 36
BH = 6 см.
BH - половина BC => BC = 12 см. Треугольник BCC1 - прямоугольный. По теореме Пифагора находим высоту призмы: CC1 ² = BC1 ² - BC ²
CC1 ² = 13 ² - 12 ² = 169 - 144 = 25.
CC1 = 5 см.
Объем призмы равен произведению площади основания на высоту: V = S * h
Высоту мы уже нашли - осталось найти площадь основания.
Треугольник ABC содержит в себе два прямоугольных треугольника => площадь ABC равна сумме площадей этих треугольников. S ABH = 8 * 6 * 0,5 = 24 см ². Площадь второго треугольника тоже равна 24. Значит S ABC = 24 + 24 = 48 см ².
V = 48 * 5 = 240 см ³.
P.S: Приношу извинения за кривой рисунок, рисовал в паинте :)