Стороны треугольника равны 1 и 2, а угол между ними равен 60◦ . Через центр вписанной окружности этого треугольника и концы третьей стороны проведена окружность. Найдите ее радиус.
Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
ответ
1.