Стороны треугольника равны 10, 5 и 5 корней из 3 сантиметров. найдите угол, лежащий на против стороны 5 сантиметров. нужно решить с теоремы косинусов. ,
Согласно теореме косинусов: cosA=(b²+c²-a²)/(2bc). Напротив угла А лежит сторона 5 см, значит: cosA=(10²+(5√3)²-5²)/(2·10·5√3)=(100+75-25)/100√3=150/100√3=3/2√3=√3/2. ∠A=30°
Напротив угла А лежит сторона 5 см, значит:
cosA=(10²+(5√3)²-5²)/(2·10·5√3)=(100+75-25)/100√3=150/100√3=3/2√3=√3/2.
∠A=30°