Стороны треугольника равны 26 м, 25 м, 3 м. Вычисли наибольшую высоту этого треугольника.
Наибольшая высота равна
м.
Дополнительные вопросы:
1. какие формулы площади треугольника используются в решении задачи?
SΔ=a⋅b⋅sinγ2
SΔ=p(p−a)(p−b)(p−c)−−−−−−−−−−−−−−−−−√
SΔ=a⋅ha2
SΔ=a23–√4
2. Чему равна площадь треугольника?
м2.
3. Какое высказывание верное?
В треугольнике наибольшая та высота, которая проведена к наибольшей стороне
В треугольнике наибольшая та высота, которая проведена к наименьшей стороне
Нужно найти меньшее основание трапеции ABCD — это отрезок ВС.
Решение.
Согласно свойству диагоналей трапеции:
Треугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения - подобны. Значит, ΔAOD~ΔBOC.
По условию Saod = 32 см², Sboc= 8 см².
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Saod / Sboc = k²;
32/8 = k²;
k²= 4;
k= 2 (-2 не подходит).
Коэффициент подобия треугольников AOD и BOC равен 2.
Соответственные стороны этих треугольников относятся и при делении равны коэффициенту.
Т.е. AD / BC = k.
AD=10 см по условию.
10 / ВС = 2;
2ВС=10;
ВС= 5 (см).
ответ: 5 см.
Объяснение:
ЗАДАЧА 1
1 вариант. Нужно построить дугу 120 с транспортира и из любой точки не на этой дуге провести лучи.
2 вариант. Нужно построить дугу 120 ( по т. о вписанном угле) с циркуля или линейки.Например так:
Чтобы разделить окружность радиуса r надо
1)из точки пересечения диаметра с окружностью начертить дополнительную дугу радиуса r.
2) получившиеся точки пересечения соединяем,
3) каждая дуга будет 120 градусов
ЗАДАЧА 2
Пусть одна часть х, тогда меньшая дуга 4х, большая дуга 5х.
Вся окружность 360, 4х+5х=360, х=40.
Меньшая дуга 4*40=160, большая дуга 5*40=200.
Пусть хорда АВ, точка М может лежать на меньшей дуге или на большей.
По т.о вписанном угле получаем:
-Если М лежит на меньшей дуге , то ∠АМВ=1/2*160=80
-Если М лежит на большей дуге , то ∠АМВ=1/2*200=100.