Стороны треугольника равны 26 м, 25 м, 3 м. Вычисли наибольшую высоту этого треугольника.
Наибольшая высота равна
м.
Дополнительные вопросы:
1. какие формулы площади треугольника используются в решении задачи?
SΔ=a⋅b⋅sinγ2
SΔ=p(p−a)(p−b)(p−c)−−−−−−−−−−−−−−−−−√
SΔ=a⋅ha2
SΔ=a23–√4
2. Чему равна площадь треугольника?
м2.
3. Какое высказывание верное?
В треугольнике наибольшая та высота, которая проведена к наибольшей стороне
В треугольнике наибольшая та высота, которая проведена к наименьшей стороне
1)Дано:тр.АВС,угол С=90 гр,СД-высота,угол АСД=4угламДСВ.
Найти:угол А,угол В.
Решение:
1)пусть угол ДСВ=х гр,тогда угол АСД=4х гр.
х+4х=90
5х=90
х=18
Значит,угол ДСВ=18 гр,угол АСД=72 гр.
2)угол А=90-72=18(гр);угол В=90-18=72(гр).
2)
треугольник АМВ прямоугольный,угол М=90градуссов,угол МВА=30 градуссов,АМ=половине АВ,так как катет лежит против угла в 30 градуссов,АМ=9 см
По теореме Пифагора можем найти ВМ,АВ в квадрате= АМ в квадрате +ВМ в квадрате
ВМ= корень квадратный из АВ в квадрате минус Ам в квадрате
ВМ=9 корней из 3 см
k нужно найти из отношения площадей.
Условие, что окружности касаются, означает, что
k*D - D = R + k*R; то есть R/D = (k* - 1)/(k + 1);
легко видеть, что R/D это синус половины угла, который надо найти, так как центры окружности лежат на биссектрисе.
Что касается величины к, то её нетрудно подобрать, k^2 = 97 + 56√3;
Легко видеть, что k^2 = 49 + 2*7*4√3 + 48 = (7 + 4√3)^2;
то есть k = 7 + 4√3; технически задача уже решена.
sin(α/2) = (7 + 4√3 - 1)/(7 + 4√3 +1) = √3/2; все преобразования сделайте сами. То есть α/2 = 60°; α = 120°;