1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
Из чертежа видно,что угол QMK равен углу FMP,как вертикальные ,поэтому треугольники равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равна стороне и двум прилегающим к ней углам второго треугольника,то такие треугольники равны между собой
Второе задание
Боковые стороны в равнобедреном треугольнике равны между собой
(39-15):2=12 см
Боковые стороны равны по 12 см
Задание четвёртое
Биссектриса в равнобедреном треугольнике опущенная из вершины на основание одновременно является и медианой и высотой
Биссектриса поделила угол АВС на два равных угла- FBC и FBA и каждый равен по 19 градусов
Как уже было сказано,биссектриса в данном случае является и высотой,а высота опускается на основание перпендикулярно и образует углы по 90 градусов,поэтому угол AFB=90 градусов
А так как биссектриса тут выступает и как медиана,то она основание АС поделила на две равные части
АF=FK=23:2=11,5
Задание 5
Треугольники CDF и DFB равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
По условию CF=FB
DF перпендикуляр на основание и углы CFD и DFB равны между собой и каждый равен 90 градусов
1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
Задание 1
По условию задачи QM=MP
Угол W и угол Р равны между собой
Из чертежа видно,что угол QMK равен углу FMP,как вертикальные ,поэтому треугольники равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равна стороне и двум прилегающим к ней углам второго треугольника,то такие треугольники равны между собой
Второе задание
Боковые стороны в равнобедреном треугольнике равны между собой
(39-15):2=12 см
Боковые стороны равны по 12 см
Задание четвёртое
Биссектриса в равнобедреном треугольнике опущенная из вершины на основание одновременно является и медианой и высотой
Биссектриса поделила угол АВС на два равных угла- FBC и FBA и каждый равен по 19 градусов
Как уже было сказано,биссектриса в данном случае является и высотой,а высота опускается на основание перпендикулярно и образует углы по 90 градусов,поэтому угол AFB=90 градусов
А так как биссектриса тут выступает и как медиана,то она основание АС поделила на две равные части
АF=FK=23:2=11,5
Задание 5
Треугольники CDF и DFB равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
По условию CF=FB
DF перпендикуляр на основание и углы CFD и DFB равны между собой и каждый равен 90 градусов
А сторона DF общая
Из этого следует,что СВ=DB=6 см
АВ-DB=AD
10-6=4 cм
АD равна 4 сантиметра
Объяснение: