Стороны треугольника равны 39, 45 и 48. В треугольник вписан параллелограмм ABCD так, что вершины B и C принадлежат меньшим сторонам треугольника, а A и D лежат на большей стороне. Найдите квадраты сторон параллелограмма, если его диагонали параллельны соответствующим сторонам треугольника.
Тогда по условию АК = АД - ДС = ВС
Отрезок ВК = ВС так как К симметрично С
Рассмотрим треугольник АКВ. Он равнобедренный так как АК = КВ
Тогда угол КАВ = углу КВА
Угол ВКД внешний угол треугольника АКВ Тогда угол ВКД = угол КАВ + угол КВА = 2* угол КАВ (так как углы при основании равнобедренного треугольника равны)
Угол ВКД = угол ВСД как углы при основании равнобедренного треугольника.
Тогда угол ВСД = 2* угол КАВ
угол ВСД + угол КАВ = 90 тогда
2* угол КАВ + угол КАВ = 90 тогда
3* угол КАВ = 90 тогда
угол КАВ = 30 а угол ВСД = 60
ответ 30 и 60
ответ: Да, является
Объяснение: Рассмотрим треугольники АЕД и BFC.
Угол А равен углу С, а отрезок АД равен ВС по свойствам параллелограмма. АЕ равен FC по условию. Следовательно, эти треугольники равны по двум сторонам и углу между ними. Значит ЕД = BF.
АВ = ДС как противолежащие стороны параллелограмма. Если вычесть от этих отрезков равные отрезки, то получившиеся чуда природы (ЕВ и ДF) тоже равны. Следовательно, в четырехугольнике BEDF стороны попарно равны и по первому признаку параллелограмма BEDF - параллелограмм.