1) опускаем сторону к основанию - падает в середину, получается 2 одинаковых прямоуг. треуг, по т-ме Пифагора высота = (под корнем) 100 - 36 = 8 S = 1/2*12*8=48 (см кв.)
2) опускаем высоту из вершины с углом 150гр., получается прямоуг. треуг. с углом в 150-90=60 град., 12 - гипотенуза, то т.к. высота лежит напротив угла в 30град, она будет равна половине гипотенузы = 6, Отсюда S= 16*6 = 96. То же самое, если поменять стороны местами (высота = 16/2 = 8, а S = 12*8 = 96 см.кв.)
3) Аналогично опускаем высоты на большее основание, получаем прямоуг. со сторонами 10, h, 10, h Основание поделено 5:10:5, Отсюда высота = 169 - 25(корень) = 12 S треуг. = 2*1/2*5*12 = 60 S прямоуг.= 10*12=120 S трап.= 60 + 120 = 180
20°
Объяснение:
1. Выполним дополнительное построение - проведем отрезок BD.
Получили равносторонний ΔCBD (т.к. ∠С=60° и BC=CD), в котором BC=CD=BD и ∠BCD=∠CBD=∠BDC=60°.
2. Тогда ΔABD - равнобедренный с AB=BD и ∠BAD=∠BDA=x° (см. рис 1)
3. ΔABO - равнобедренный с AB=AO, ∠OAB=x и ∠ABO=∠AOB.
4. Исходя из 1, 2, 3 получаем (см. рис. 2):
∠ODC=(60-x)°
∠COD=180°-60°-(60-x)°=(60+x)°
∠AOB=∠COD=(60+x)° - как накрест лежащие
∠ABO=∠AOB=(60+x)°
Из суммы углов ΔABO:
∠OAB+∠ABO+∠AOB=180° ⇒
x°+(60+x)°+(60+x)°=180°
3x°=60°
x=20°
S = 1/2*12*8=48 (см кв.)
2) опускаем высоту из вершины с углом 150гр., получается прямоуг. треуг. с углом в 150-90=60 град., 12 - гипотенуза, то т.к. высота лежит напротив угла в 30град, она будет равна половине гипотенузы = 6, Отсюда S= 16*6 = 96.
То же самое, если поменять стороны местами (высота = 16/2 = 8, а S = 12*8 = 96 см.кв.)
3) Аналогично опускаем высоты на большее основание, получаем прямоуг. со сторонами 10, h, 10, h
Основание поделено 5:10:5,
Отсюда высота = 169 - 25(корень) = 12
S треуг. = 2*1/2*5*12 = 60
S прямоуг.= 10*12=120
S трап.= 60 + 120 = 180