Стороны треугольника соответственно равны 6см,7см,9см. Найди : Cos наименьшего угла Градусную меру наименьшего угла ,используя калькулятор 1 Cos C округли до тысячных (0.001) Угол C (округли до целых)
Равноудаленная от катетов точка на гипотенузе делит её на отрезки длиной 30 см и 40 см. Найдите катеты треугольника. ---- Обозначим треугольник АВС, С=90°, точку на гипотенузе К. Так как точка равноудалена от катетов, расстояние от неё до них равно длине равных отрезков, проведенных к катетам перпендикуляров: КМ до ВС, КН до АС.
Все углы четырехугольника МКНС, вписанного в прямоугольный треугольник АВС – прямые, две стороны равны по условию, две другие им параллельны и противолежат, поэтому он – квадрат.
Его диагональ СМ для прямого угла С является биссектрисой.
Биссектриса угла треугольника делит противолежащую этому угла сторону на отрезки, пропорциональные прилежащим сторонам. ⇒
ВС:АС=ВК:АК.
Обозначим АС=х, ВС=у. ⇒
у:х=30:40 ⇒ у:х=3:4 ⇒
у=3х/4
АВ=30+40=7•10
По т.Пифагора
АВ²=АС²+ВС²=х²+у² Заменим у на его значение, выраженное через х:
Считаем, что по условию биссектриса ВD проведена из вершины В треугольника, иначе бы было сказано, что дана биссектриса угла при основании. Тогда: 1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В). 2. Проводим прямую ВD1, равную двум отрезкам ВD. 3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ. 4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.
----
Обозначим треугольник АВС, С=90°, точку на гипотенузе К. Так как точка равноудалена от катетов, расстояние от неё до них равно длине равных отрезков, проведенных к катетам перпендикуляров: КМ до ВС, КН до АС.
Все углы четырехугольника МКНС, вписанного в прямоугольный треугольник АВС – прямые, две стороны равны по условию, две другие им параллельны и противолежат, поэтому он – квадрат.
Его диагональ СМ для прямого угла С является биссектрисой.
Биссектриса угла треугольника делит противолежащую этому угла сторону на отрезки, пропорциональные прилежащим сторонам. ⇒
ВС:АС=ВК:АК.
Обозначим АС=х, ВС=у. ⇒
у:х=30:40 ⇒ у:х=3:4 ⇒
у=3х/4
АВ=30+40=7•10
По т.Пифагора
АВ²=АС²+ВС²=х²+у² Заменим у на его значение, выраженное через х:
7²•10²=х²+ 9х²/16
7²•10²=25x²/16
25x²=49•100•16
x²=49•4•16 ⇒x=7•2•4=56 см – длина АС
ВС=3•56/4=42 см
Тогда:
1. Проводим из произвольной точки В две концентрические окружности радиусами АВ (боковая сторона треугольника) и ВD (биссектриса угла В).
2. Проводим прямую ВD1, равную двум отрезкам ВD.
3. Строим перпендикуляр к середине отрезка ВD1 (то есть перпендикуляр к прямой ВD1, проходящий через точку D). Для этого из точки D1 радиусом АВ проводим окружность и соединяем точки А и С пересечения двух окружностей радиуса АВ.
4. Соединив полученные точки А и С с точкой В получаем искомый равнобедренный треугольник АВС.