1)Рассуждаем: если одна сторона прямоугольника х, то противоположная сторона также х.
2)Из периметра 20 вычитаем 2х, те (20-2х) -это то, что осталось от периметра на две другие, также равные друг другу противоположные стороны.
Тогда каждая из этих сторон будет равна (20-2х)/2=10-x
3) Итак выяснили, что стороны прямоугольника (попарно) есть х и 10-х.
4) Тогда площадь прямоугольника выразится как х·(10-х)=24.
Получим квадратное уравнение: х²-10х+24=0
Откуда х=6 и х=4 (тогда другая , смежная сторона будет 10-х т.е 4 или 6)
5) Вывод: прямоугольник с площадью 24см² должен иметь стороны 6см и 4 см.
Ну а к вопросу о том, что нужно начертить прямоугольный треугольник площадь которого в 2 раза меньше, чем площадь ранее рассмотренного прямоугольника, вообще никаких у Вас затруднений не вызовет-нужно просто провести любую диагональ в прямоугольнике. Она и разделит этот прямоугольник на два равных прямоугольных треугольника, каждый из которых будет в 2 раза меньше площади прямоугольника.
1. Если в четырёхугольник можно вписать окружность, то у него суммы длин противоположных сторон равны: AB+CD=BC+AD
Так как боковые стороны равны, то можно найти их длину:
AB=CD=BC+AD2=1+92=5 см.
2. Проводим высоту трапеции из вершины B к основанию AD. Так как трапеция — равнобедренная, и известны длины обоих оснований, то можно вычислить длину AG:
AG=AD−BC2=9−12=4 см.
3. Так как ΔABG — прямоугольный, то по теореме Пифагора находим высоту трапеции:
BG=AB2−AG2−−−−−−−−−−√=52−42−−−−−−√=25−16−−−−−−√=9√=3 см
4. Высота трапеции равна диаметру вписанной окружности. BG=EF=2R, поэтому радиус окружности равен:
1)Рассуждаем: если одна сторона прямоугольника х, то противоположная сторона также х.
2)Из периметра 20 вычитаем 2х, те (20-2х) -это то, что осталось от периметра на две другие, также равные друг другу противоположные стороны.
Тогда каждая из этих сторон будет равна (20-2х)/2=10-x
3) Итак выяснили, что стороны прямоугольника (попарно) есть х и 10-х.
4) Тогда площадь прямоугольника выразится как х·(10-х)=24.
Получим квадратное уравнение: х²-10х+24=0
Откуда х=6 и х=4 (тогда другая , смежная сторона будет 10-х т.е 4 или 6)
5) Вывод: прямоугольник с площадью 24см² должен иметь стороны 6см и 4 см.
Ну а к вопросу о том, что нужно начертить прямоугольный треугольник площадь которого в 2 раза меньше, чем площадь ранее рассмотренного прямоугольника, вообще никаких у Вас затруднений не вызовет-нужно просто провести любую диагональ в прямоугольнике. Она и разделит этот прямоугольник на два равных прямоугольных треугольника, каждый из которых будет в 2 раза меньше площади прямоугольника.
Удачи и здоровья!
AB+CD=BC+AD
Так как боковые стороны равны, то можно найти их длину:
AB=CD=BC+AD2=1+92=5 см.
2. Проводим высоту трапеции из вершины B к основанию AD. Так как трапеция — равнобедренная, и известны длины обоих оснований, то можно вычислить длину AG:
AG=AD−BC2=9−12=4 см.
3. Так как ΔABG — прямоугольный, то по теореме Пифагора находим высоту трапеции:
BG=AB2−AG2−−−−−−−−−−√=52−42−−−−−−√=25−16−−−−−−√=9√=3 см
4. Высота трапеции равна диаметру вписанной окружности.
BG=EF=2R, поэтому радиус окружности равен:
R=BG2=32=1,5 см.