Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Задайте вектор m , начало и конец которого лежат в вершинах тетраэдра АВСD и выполняется следующее условие вектор
АС=АВ-m-СD
Объяснение:
Векторам присущи свойства которые позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым :
АС=АВ-m-СD,
m=АВ-СD-АС,
m=АВ-АС-СD . По правилу вычитания векторов (оба вектора выходят из общей точки А , стрелка разности к уменьшаемому) АВ-АС =СВ;
m=СВ-СD , и снова правило вычитание векторов , тк они выходят из общей точки С ,
m=DВ.
В таких задачах даже чертеж не нужен.