Построим параллелограмм АВСД - короткие стороны АВ||СД и большие стороны ВС||АД, диагонали АС и ВД. Т.к. диагонали параллелограмма в точке пересечения О делятся пополам, то вначале нужно построить треугольник АОД по 3 сторонам: 1) провести горизонтальную прямую и на ней отложить отрезок АД (большая сторона параллелограмма); 2) с центром в точке А проведем окружность радиусом равным длине половины диагонали АС; 3) с центром в точке Д проведем окружность радиусом равным длине половины диагонали ВД; 4) пересечение двух окружностей будет точка О; 5) соединим прямыми точки А, О и Д. После того как построили треугольник АОД, далее на продолжении стороны АО откладываем такой же отрезок ОС=АО, а на продолжении стороны ДО откладываем отрезок ОВ=ДО. Соединим прямыми точки А, В, С и Д - получится параллелограмм АВСД.
1)Пусть АВСД - данный параллелограмм, угол А-тупой, ВН -высота. АН=2 см, НД=8см. Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см. В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов. В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС) /АВ*АД. (записать в виде дроби) , SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).
Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см.
В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов.
В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС) /АВ*АД. (записать в виде дроби) , SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).