Параллелограмм – четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Противоположные стороны параллелограмма попарно равны. Признаки: 1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. 2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом. 3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом. 1 признак: Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
Пусть углы будут А В С, эти буквы легче набирать центр описанной окружности лежит на пересечении срединных перпендикуляров, проведя котрые и соединив центр описанной окружности с вершинами треугольника, получим три треугольника с основаниями равными длинам сторон а в с и высотами равными R радиусу описанной окружности. Искомая площадь равна сумме площадей этих 3-х треугольников
S=aR/2+bR/2+cR/2=R/2*(a+b+c)
Для определения сторон а в с воспользуемся теоремой синусов справедливой для вписанного треугольника
а/sinA=b/sinB=c/sinC=2R
выразив стороны получим a=2RsinA b=2RsinB c=2RsinC
Признаки:
1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
1 признак:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
центр описанной окружности лежит на пересечении срединных перпендикуляров, проведя котрые и соединив центр описанной окружности с вершинами треугольника, получим три треугольника
с основаниями равными длинам сторон а в с и высотами равными R радиусу
описанной окружности. Искомая площадь равна сумме площадей этих 3-х
треугольников
S=aR/2+bR/2+cR/2=R/2*(a+b+c)
Для определения сторон а в с воспользуемся теоремой синусов справедливой для вписанного треугольника
а/sinA=b/sinB=c/sinC=2R
выразив стороны получим
a=2RsinA
b=2RsinB
c=2RsinC
Тогда площадь равна:
S=R^2 *(sinA+sinB+sinC)