Если третья сторона будет=1 см, то не получится неравенство: 1см+1см= 2 см, тогда 3см>2 см, а должно быть<. Если третья сторона = 2 см, то неравенство опять не получится: 2+1=3, тогда 3=3, так тоже не может быть, т.к. одна из сторон треугольника должна быть меньше суммы двух других сторон. Если третья сторона =3 см, тогда 1+3=4, 3<4, неравенство выполняется, 3+3=6, 3<6- неравенство получается. Возьмем 4 см: 3+1=4, 4=4- не получается, значит и в последующих числах не получится. ответ: 3 см
Пусть точка H-проекция точки AA1 на основание, A1H=h-высота призмы, угол A1AH равен фи. Объём призмы равен произведению площади основания на высоту. Осталось найти площадь основания. AH=h*ctg "фи", c другой стороны, AH это 2/3 от высоты основания. Пусть высота основания(треугольника ABC) AD, она равна a*sqrt3/2, где a-cторона основания. Тогда AH=a*sqrt3/3=h*ctg "фи". a=sqrt3*h*ctg "фи". Площадь равностороннего треугольника равна a*a*sqrt3/4=3ctg^2 "фи"*h^2*sqrt3/4. Объём равен 3sqrt3/4*ctg^2 "фи"*h^3. Если словами, то получился объём "3 корня из 3 умножить на котангенс в квадрате фи умножить на h в кубе делить на 4.
Площадь равностороннего треугольника равна a*a*sqrt3/4=3ctg^2 "фи"*h^2*sqrt3/4.
Объём равен 3sqrt3/4*ctg^2 "фи"*h^3.
Если словами, то получился объём "3 корня из 3 умножить на котангенс в квадрате фи умножить на h в кубе делить на 4.