1)Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Третий признак равенства треугольников.
2)периметр - это сумма длин сторон какой-либо геометрической фигуры. Полупериметр - половина периметра.
3)Два треугольника, которые можно совместить наложением, называются равными. ... Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
4)Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противоположную сторону треугольника. * Прямые, содержащие высоты треугольника, пересекаются в одной точке (которая называется ортоцентром данного треугольника).
1)Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Третий признак равенства треугольников.
2)периметр - это сумма длин сторон какой-либо геометрической фигуры. Полупериметр - половина периметра.
3)Два треугольника, которые можно совместить наложением, называются равными. ... Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
4)Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противоположную сторону треугольника. * Прямые, содержащие высоты треугольника, пересекаются в одной точке (которая называется ортоцентром данного треугольника).
Объяснение:
[ 50 : 10 = 5 ]
В параллелограмме ABCD дано: AD = 2, угол BAD = 60°, ВЕ и AD - перпендикулярны, ВЕ = 2√3. Найдите длину большей диагонали параллелограмма.
Дано: ABCD параллелограмма
AD =2 ; ∠BAD = 60° ;
BE ⊥ AD ; ВЕ = 2√3 . -------
AC - ?
ответ: 2√7
Объяснение: Из ΔABE :
AE =BE*ctg(∠BAD) =2√3*ctg60° =2√3* 1/√3 = 2 = AD
! E совпадает с вершиной D
AB = BD/sin60° = (2√3) / (√3/2) = 4
* * * по другому(чисто геометрическим как катет против угла 30°) AB =2AE и √(AB² - AE²) =BE ⇔ AE√3 =2√3 ⇒ AE =2; AB=4 и E ≡ D * * *
AC² +BD² =2(AB²+AD²) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
AC² =2(4² +2²) - (2√3) ² =40 -12 =28
AC =2√7 .
cм приложение