так как сторона вс=17см сторона сд=8см сторона вд=15 см получаем 17^2=8^2+15^2 289=289 выполнена теорема пифагора следовательно треугольник всд прямоугольный
угол А=45 угол Д=90 СЛЕДОВАТЕЛЬНО УГОЛ В=45 ТО ЕСТЬ ТРЕУГОЛЬНИК АВД РАВНОБЕДРЕННЫЙ ВД=АД=15 СМ НАХОДИМ ПЛОЩАДЬ ОНА РАВНА ПОЛОВИНЕ ПРОИЗВЕДЕНИЯ КАТЕТОВ =1/2*АД*ВД=1/2*15*15=112,5 СМ^2
номер 3
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
ответ: r=1 1/3 cm
R=13.5 cm
Объяснение:
Половина периметра треугольника равна:
p=(3+25+26):2=27cm
Площадь треугольника по т. Герона S=sqrt(p(p-a)(p-b)(p-c))=
=sqrt(27*24*2*1)=3*sqrt(3*3*2*4*2)=3*3*4=36 cm²
С другой стороны S=pr= 27*r=36
=> r=36/27=4/3= 1 1/3 cm - радиус вписанной окружности.
Теперь найдем радиус описанной окружности.
Найдем cos угла , лежащего напротив стороны 3 см по т. косинусов.
9= 625+676-2*25*26*сos x
9=1301-50*26*cos x
1292-1300*cos x=0
cos x= 1292/1300=323/325
Найдем sinx =sqrt (1-(323/325)²)=sqrt( (325²-323²)/325²)=
=sqrt((325+323)(325-323)/325²)=2*sqrt(324)/325=4*9/325=36/325
=>по т синусов имеем 3/sinx=2R
3*325/36=2R
325/12=2R
R=325/24
R=13.5 cm
номер 2
так как сторона вс=17см сторона сд=8см сторона вд=15 см получаем 17^2=8^2+15^2 289=289 выполнена теорема пифагора следовательно треугольник всд прямоугольный
угол А=45 угол Д=90 СЛЕДОВАТЕЛЬНО УГОЛ В=45 ТО ЕСТЬ ТРЕУГОЛЬНИК АВД РАВНОБЕДРЕННЫЙ ВД=АД=15 СМ НАХОДИМ ПЛОЩАДЬ ОНА РАВНА ПОЛОВИНЕ ПРОИЗВЕДЕНИЯ КАТЕТОВ =1/2*АД*ВД=1/2*15*15=112,5 СМ^2
номер 3
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
S AMD=[AC•CD:2]:2=4•3:4=3 см²
Объяснение: