1) Если точка А лежит между точками В и С, тогда АВ + АС = ВС. Проверим:
АВ + АС = 4,3 + 7,5 = 11,8 (см)
ВС = 3,2 (см)
11,8 см ≠ 3,8 см ⇒ точка А не может лежать между точками В и С.
2) Если точка С лежит между точками А и В, тогда АС + ВС = АВ. Проверим:
АС + ВС = 7,5 + 3,2 = 10,7 (см)
АВ = 4,3 (см)
10,7 см ≠ 4,3 см ⇒ точка С не может лежать между точками А и В.
3) Если точка В лежит между точками А и С, тогда АВ + ВС = АС. Проверим:
АВ + ВС = 4,3 + 3,2 = 7,5 (см)
АС = 7,5 (см)
7,5 см = 7,5 см ⇒ точка В лежит между точками А и С.
Объяснение:
Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.
Найти: а) апофему А пирамиды.
Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.
Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.
Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.
Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.
б) угол α между боковой гранью и основанием равен:
α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.
в) площадь Sбок боковой поверхности.
Периметр основания Р = 3в = 3*2a√3 = 6a√3.
Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.
г) плоский угол γ при вершине пирамиды(угол боковой грани).
γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.
1) Если точка А лежит между точками В и С, тогда АВ + АС = ВС. Проверим:
АВ + АС = 4,3 + 7,5 = 11,8 (см)
ВС = 3,2 (см)
11,8 см ≠ 3,8 см ⇒ точка А не может лежать между точками В и С.
2) Если точка С лежит между точками А и В, тогда АС + ВС = АВ. Проверим:
АС + ВС = 7,5 + 3,2 = 10,7 (см)
АВ = 4,3 (см)
10,7 см ≠ 4,3 см ⇒ точка С не может лежать между точками А и В.
3) Если точка В лежит между точками А и С, тогда АВ + ВС = АС. Проверим:
АВ + ВС = 4,3 + 3,2 = 7,5 (см)
АС = 7,5 (см)
7,5 см = 7,5 см ⇒ точка В лежит между точками А и С.
Объяснение:
Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.
Найти: а) апофему А пирамиды.
Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.
Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.
Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.
Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.
б) угол α между боковой гранью и основанием равен:
α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.
в) площадь Sбок боковой поверхности.
Периметр основания Р = 3в = 3*2a√3 = 6a√3.
Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.
г) плоский угол γ при вершине пирамиды(угол боковой грани).
γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.