Сумма длин 3-х граней прямоугольного параллелепипеда, выступающего с одного конца: 1) 24 см; 2) 18 см га тенг. Сколько сантиметров длина всех его краев?
Площадь равна S=r*a+r*(b+c)=b*c*sin(A)/2 По теорем косинусов а*a=b*b+c*c-2bc*cos(A) Есть два уравнения и два неизвестных. Перепишем теорему косинусов так а*а=(b+c)^2-2bc(cos(A)+1) (b+c)=bc*sin(A)/2r-a
ПОПРОБУЕМ:
а*а=(b+c)^2-2bc(cos(A)+1) (b+c)=bc*sin(A)/2r-a (b+c)=x bc=(xr+ar)/sinA a*a=x*x-2*(xr+ar)*(cosA+1)/sinA a*a=x*x-2(x+a)r*ctg(A/2) x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2 (x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2 (x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2 x=a+2r*ctg(A/2) (b+c)= a+2r*ctg(A/2) (вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить) (b-c)^2= b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA (b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))
Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть Получили бы еще и симметричное решение. b и c равноправны и их можно поменять местами. Извините , за некрасивый ответ. Надеюсь, правильный.
По теорем косинусов а*a=b*b+c*c-2bc*cos(A)
Есть два уравнения и два неизвестных.
Перепишем теорему косинусов так
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
ПОПРОБУЕМ:
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
(b+c)=x
bc=(xr+ar)/sinA
a*a=x*x-2*(xr+ar)*(cosA+1)/sinA
a*a=x*x-2(x+a)r*ctg(A/2)
x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2
(x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2
(x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2
x=a+2r*ctg(A/2)
(b+c)= a+2r*ctg(A/2)
(вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить)
(b-c)^2= b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA
(b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))
b= (a+2r*ctg(A/2) )/2+ sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
c=(a+2r*ctg(A/2) )/2- sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть
Получили бы еще и симметричное решение. b и c равноправны и их можно поменять местами.
Извините , за некрасивый ответ. Надеюсь, правильный.
ответ: ∠АСВ = 112°
Объяснение:
1. АО = ОВ и CO = OD по условию,
∠АОС = ∠BOD как вертикальные, значит
ΔАОС = ΔBOD по двум сторонам и углу между ними.
Из равенства треугольников следует, что
АС = BD и ∠САО = ∠DBO.
2. Тогда в треугольниках АСВ и BDA:
АС = BD, ∠1 = ∠2, AB - общая сторона, значит
ΔАСВ = ΔBDA по двум сторонам и углу между ними.
3. ∠1 = ∠2, а эти углы - накрест лежащие при пересечении прямых АС и BD секущей АВ, значит
АС║BD.
∠АСВ + ∠CBD = 180°, так как эти углы соответственные при пересечении параллельных прямых АС и BD секущей ВС, тогда
∠АСВ = 180° - ∠CBD = 180° - 68° = 112°