6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Сегодня такая же задача была на экзамене у меня. Пусть O - точка пересечения медианы и биссектрисы. Нам нужно найти стороны AB, BC и AC. Медиана AD делит треугольник ABC на два равных по площади треугольника : S ADC = S ADB = 1/2 S ABC. Соединим точки E и D . Отрезок ED будет являться медианой треугольника BEC значит S DBE = S EDC .
Рассмотрим треугольник ABD : 1) В нём углы ABE и DBE равны так как BE биссектриса, но BO ещё и является высотой треугольника, так как BE ⊥ AD. 2)Поэтому треугольник ABD равнобедренный и AB = BD. 3) Медиана BO делит основание AD на два равных отрезка AO=OD=136 / 2=68.
Рассмотрим треугольники ABE и DBE: 1) В них углы ABE и DBE равны так как BE биссектриса . BE общая сторона , AB = BD 2) Треугольник ABE равен треугольнику DBE по первому признаку,поэтому S ABE = S DBE = S EDC = 1/3 S ABC. S ABE = 1/2 * BE * AO =1/2 * 136 * 68 = 4624. S ABC= 3 S ABE = 4624 * 3 = 13872. S ABD = 1/2 S ABC = 13872 / 2 = 6936. S ABD= 1/2 * AD * BO = 6936 ===> 68 * BO = 6936 = => BO = 102.
Рассмотрим треугольник ABO : 1) В нём угол BOA = 90° так как BO ⊥ AD. 2) Поэтому треугольник ABO прямоугольный и по теореме Пифагора находим AB = √(BO² + AO²)= √(10404 + 4624)= √15028= √(4 * 13 * 17 *17) = 34*√13. Так как AD - медиана,то BD = DC = AB =34*√13. Поэтому сторона BC равна 2 * AB = 68 *√13. Осталось найти последнюю сторону AC Рассмотрим треугольник AEO: 1) В нём угол AOE=90 , OE= BE- BO = 136 -102 = 34. 2) Поэтому треугольник AEO прямоугольный , и по теореме пифагора находим гипотенузу AE . AE = √( 0E² + AO ²)= √( 1156 + 4624)=√5780=√(5* 4 * 17 * 17) = 17* 2 *√5 = 34*√5.
Так как BE - биссектриса, то она делит сторону AC на отрезки, которые одинаково относятся к прилегающим им сторонам AB и BС , тоесть AE/AB = EC/BC. (34 * √5) / (34 * √13) = EC / (68 * √13) . Если всё сократить и воспользоваться свойством пропорции получаем ,что EC =68 * √5 . AC = AE + EC = (68 *√5) + (34 * √5 )=√5 * ( 68 + 34 ) = 102 * √5.
ответ : AB = 34 * √13, BC = 68 * √13, AC = 102 * √5.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Медиана AD делит треугольник ABC на два равных по площади треугольника : S ADC = S ADB = 1/2 S ABC.
Соединим точки E и D . Отрезок ED будет являться медианой треугольника BEC значит S DBE = S EDC .
Рассмотрим треугольник ABD : 1) В нём углы ABE и DBE равны так как BE биссектриса, но BO ещё и является высотой треугольника, так как BE ⊥ AD.
2)Поэтому треугольник ABD равнобедренный и AB = BD. 3) Медиана BO делит основание AD на два равных отрезка AO=OD=136 / 2=68.
Рассмотрим треугольники ABE и DBE: 1) В них углы ABE и DBE равны так как BE биссектриса . BE общая сторона , AB = BD 2) Треугольник ABE равен треугольнику DBE по первому признаку,поэтому S ABE = S DBE = S EDC = 1/3 S ABC.
S ABE = 1/2 * BE * AO =1/2 * 136 * 68 = 4624.
S ABC= 3 S ABE = 4624 * 3 = 13872.
S ABD = 1/2 S ABC = 13872 / 2 = 6936.
S ABD= 1/2 * AD * BO = 6936 ===> 68 * BO = 6936 = => BO = 102.
Рассмотрим треугольник ABO : 1) В нём угол BOA = 90° так как BO ⊥ AD.
2) Поэтому треугольник ABO прямоугольный и по теореме Пифагора находим AB = √(BO² + AO²)= √(10404 + 4624)= √15028= √(4 * 13 * 17 *17) = 34*√13.
Так как AD - медиана,то BD = DC = AB =34*√13. Поэтому сторона BC равна 2 * AB = 68 *√13.
Осталось найти последнюю сторону AC
Рассмотрим треугольник AEO:
1) В нём угол AOE=90 , OE= BE- BO = 136 -102 = 34.
2) Поэтому треугольник AEO прямоугольный , и по теореме пифагора находим гипотенузу AE . AE = √( 0E² + AO ²)= √( 1156 + 4624)=√5780=√(5* 4 * 17 * 17) = 17* 2 *√5 = 34*√5.
Так как BE - биссектриса, то она делит сторону AC на отрезки, которые одинаково относятся к прилегающим им сторонам AB и BС , тоесть AE/AB = EC/BC. (34 * √5) / (34 * √13) = EC / (68 * √13) . Если всё сократить и воспользоваться свойством пропорции получаем ,что EC =68 * √5 .
AC = AE + EC = (68 *√5) + (34 * √5 )=√5 * ( 68 + 34 ) = 102 * √5.
ответ : AB = 34 * √13, BC = 68 * √13, AC = 102 * √5.