сумма двух углов треугольника равна третьему, а два меньших угла относятся как 1:2. Большая сторона равна 48 см. Найдите отрезки, на которых высота, опущенная из вершин большего угла треугольника, делит противоположную сторону.
Так как вектор m противоположно направлен вектору b, то вектор m равен число (-p) умноженое на вектор b. Вектор m будет иметь координаты b(-2p;-2p). вектор m имеет туже длину, что и вектор a. Длинна вектора a равна корень квадратный из 2 в степени 2+2 в степени 2, тоесть равна 2 умноженое на крень из 2. Длинна вектора m равна корню квдаратному из (-2p) в квадрате+(-2p) в квадрате, тоесть равно 2корень из 2 умноженое на p 2 корень из 2 умноженое на p равно 2 корень из 2 p равно 1 значит вектор m имеет координаты (-2;-2)
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему. ==== Смотрите рисунок, приложенный к ответу. Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет, Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: Отсюда: Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше . Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
(-p) умноженое на вектор b. Вектор m будет иметь координаты b(-2p;-2p).
вектор m имеет туже длину, что и вектор a. Длинна вектора a равна корень квадратный из 2 в степени 2+2 в степени 2, тоесть равна 2 умноженое на крень из 2.
Длинна вектора m равна корню квдаратному из (-2p) в квадрате+(-2p) в квадрате, тоесть равно 2корень из 2 умноженое на p
2 корень из 2 умноженое на p равно 2 корень из 2
p равно 1
значит вектор m имеет координаты (-2;-2)
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим . Из условия ясно, что он — прямоугольный (так как ). — гипотенуза, — искомый катет,
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть:
Отсюда:
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
Как мы выяснили чуть выше .
Заменяем и получаем:
Немного поколдуем:
Отсюда найдем :
Теперь напомню зачем нам нужно было
Подставляем вместо новую подстановку:
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
Найдем, наконец,
Это ответ.