5.угол ВАЕ =60 град, значит угол АВЕ=30град.в прямоуг треуг против угола 30 градусов лежит сторона равная половине гипотенузы, значит половине боковой стороны с длиной 4 , то есть АЕ=2, СООТВЕТСТВЕННО ЧТОБ ПОЛУЧИЛСЯ ВЕРХ ТРАПЕЦИИ ,Надо из низа (12) вычесть два таких симметричных отрезка 12-2-2=8.
6. площадь трапеции равна произведению ее сред линии на высоту h,но также произведению среднего арифметического оснований на эту же высоту.Высоту сокращаем и приравниваем 11=((2х+4х+7х это низ) +4х (это верх))/2 .....х=11/17, 4х(верх)=44/17 (сократишь сам),низ =2х+4х+7х=13х=13*11/17= ...сам дорешаешь.
Сумма углов треугольника равна 180°. Так как углы при основании равнобедренного треугольника равны, то угол при вершине равен 180° - 2*30° = 180 - 60 = 120°.
Площадь треугольника равна:
S = 0.5 * AB * BC * sinB = 0.5 AB²sin120°, где AB = BC как боковые стороны.
Тогда AB² = 2S/sin120° = 2*4√3/(√3/2) = 16 ⇒ AB = 4
Теперь рассмотрим прямоугольный треугольник, который образован искомой высотой, одной из боковой сторон и половиной длины основания. Угол, противолежащий искомой высоте, равен 30° по условию. Тогда, по определению синуса, h = AB*sin30° = 4 * 0.5 = 2.
5.угол ВАЕ =60 град, значит угол АВЕ=30град.в прямоуг треуг против угола 30 градусов лежит сторона равная половине гипотенузы, значит половине боковой стороны с длиной 4 , то есть АЕ=2, СООТВЕТСТВЕННО ЧТОБ ПОЛУЧИЛСЯ ВЕРХ ТРАПЕЦИИ ,Надо из низа (12) вычесть два таких симметричных отрезка 12-2-2=8.
6. площадь трапеции равна произведению ее сред линии на высоту h,но также произведению среднего арифметического оснований на эту же высоту.Высоту сокращаем и приравниваем 11=((2х+4х+7х это низ) +4х (это верх))/2 .....х=11/17, 4х(верх)=44/17 (сократишь сам),низ =2х+4х+7х=13х=13*11/17= ...сам дорешаешь.
Сумма углов треугольника равна 180°. Так как углы при основании равнобедренного треугольника равны, то угол при вершине равен 180° - 2*30° = 180 - 60 = 120°.
Площадь треугольника равна:
S = 0.5 * AB * BC * sinB = 0.5 AB²sin120°, где AB = BC как боковые стороны.
Тогда AB² = 2S/sin120° = 2*4√3/(√3/2) = 16 ⇒ AB = 4
Теперь рассмотрим прямоугольный треугольник, который образован искомой высотой, одной из боковой сторон и половиной длины основания. Угол, противолежащий искомой высоте, равен 30° по условию. Тогда, по определению синуса, h = AB*sin30° = 4 * 0.5 = 2.
ответ: 2