Находим площадь маленького треугольника S=1/2*a*b, где a,b- катеты треугольника прямоугольного. S=4*3/2=6см^2 Отношение площадей подобных треугольников равно коэффициенту подобия(k) в квадрате. 54/6=k^2 => k=3. наибольшая сторона у прямоугольных треугольников гипотенуза. Гипотенуза маленького треугольника равна 5( или Пифагорова тройка 3, 4, 5 или находишь по Теореме Пифагора х^2=3^2+4^2 x^2=9+16=25 x=5). Так как коэффициент подобия равен трем, то гипотенуза большего треугольника в 3 раза больше данного нам и равна 3*5=15 ответ 15 см
1) AC=AB⇒медиана AM по совместительству является высотой.
2) Медианы в точке пересечения делятся в отношении 2:1, считая от вершины. Используя AM:BF=8:5 и указанное свойство, а также в целях уменьшения числа дробей в решении, положим ОМ=8t; OF=5t; AO=16t; BO=10t.
3) Как известно, все три медианы треугольника делят его на 6 равновеликих треугольника, поэтому вместо использования ΔAOF можно использовать ΔBOM (кто этот факт не знает, может рассуждать, например так: у этих Δ есть равные углы (как вертикальные), а прилежащие к ним стороны таковы, что BF=2OF, а AO=2OM, поэтому формула для площади "половина произведения сторон на синус угла между ними" даст одинаковый ответ.
4) ΔBOM лучше тем, что он прямоугольный. По теореме Пифагора выражаем BM: BM²=BO²-OM²; BM=6t (на самом деле я не применял теорему Пифагора, а просто заметил, что этот Δ подобен египетскому).
5) Площадь ΔBOM=24=8t·6t/2 (половина произведения катетов), поэтому t²=1; t=1; BF=15t=15
ответ 15 см
2) Медианы в точке пересечения делятся в отношении 2:1, считая от вершины. Используя AM:BF=8:5 и указанное свойство, а также в целях уменьшения числа дробей в решении, положим ОМ=8t; OF=5t; AO=16t; BO=10t.
3) Как известно, все три медианы треугольника делят его на 6 равновеликих треугольника, поэтому вместо использования ΔAOF можно использовать ΔBOM (кто этот факт не знает, может рассуждать, например так: у этих Δ есть равные углы (как вертикальные), а прилежащие к ним стороны таковы, что BF=2OF, а AO=2OM, поэтому формула для площади "половина произведения сторон на синус угла между ними" даст одинаковый ответ.
4) ΔBOM лучше тем, что он прямоугольный. По теореме Пифагора выражаем BM: BM²=BO²-OM²; BM=6t (на самом деле я не применял теорему Пифагора, а просто заметил, что этот Δ подобен египетскому).
5) Площадь ΔBOM=24=8t·6t/2 (половина произведения катетов), поэтому t²=1; t=1; BF=15t=15
ответ: BF=15