Углы ромба, прилежащие к одной стороне, в сумме равны 180°, следовательно, острый угол ромба равен 180°-120°=60°. Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны. Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой) равны по 60°. Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть сторона ромба= 36:4=9. ответ: меньшая диагональ ромба равна 9.
Пусть сторона квадрата до увеличения - х, тогда после увеличения на 20% - 1,2х. Пусть площадь квадрата до увеличения - S, тогда после увеличения - S+11. Можно составить систему уравнений: х²=S (1,2x)²=S+11
х²=S 1,44x²=S+11
Вычтем из второго уравнения первое: 1,44x²-х²=S+11-S 0,44x²=11 x²=11/0,44=25 x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной х2=5 (дм) Итак, сторона квадрата до увеличения равна 5 дм. Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)
Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны.
Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой)
равны по 60°.
Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть
сторона ромба= 36:4=9.
ответ: меньшая диагональ ромба равна 9.
Можно составить систему уравнений:
х²=S
(1,2x)²=S+11
х²=S
1,44x²=S+11
Вычтем из второго уравнения первое:
1,44x²-х²=S+11-S
0,44x²=11
x²=11/0,44=25
x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной
х2=5 (дм)
Итак, сторона квадрата до увеличения равна 5 дм.
Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)