В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
герман123344444
герман123344444
23.10.2022 07:59 •  Геометрия

Св тетраэдре abcd на медиане аm треугольника abd взята точка n так,что вектор an=2/3 векторam. выразите вектор cn через вектора а=са, б=св, с=сd.

Показать ответ
Ответ:
LeaV
LeaV
06.01.2020 12:58

ответ:Ре­ше­ние.

а) Обо­зна­чим бук­вой E точку пе­ре­се­че­ния от­рез­ков MK и AB. Углы ∠ALB и ∠LAD равны, как на­крест ле­жа­щие углы; ана­ло­гич­но ∠CLD = ∠ADL, как на­крест ле­жа­щие. От­сю­да по­лу­ча­ем, что ∠BAL = ∠BLA, ∠CDL = ∠CLD, то есть тре­уголь­ни­ки ABL и CLD рав­но­бед­рен­ные (AB = BL, CL = CD). Тогда бис­сек­три­сы этих тре­уголь­ни­ков BM и CK яв­ля­ют­ся также вы­со­та­ми и ме­ди­а­на­ми. Зна­чит, точки M и K яв­ля­ют­ся се­ре­ди­на­ми сто­рон AL и DL со­от­вет­ствен­но. От­сю­да сле­ду­ет, что от­ре­зок MK яв­ля­ет­ся сред­ней ли­ни­ей тре­уголь­ни­ка ALD. Зна­чит, MK || AD.

Те­перь если рас­смот­реть тре­уголь­ник ABL, по­лу­ча­ем, что от­ре­зок EM па­рал­ле­лен сто­ро­не BL и ис­хо­дит из се­ре­ди­ны сто­ро­ны AL. От­сю­да сле­ду­ет, что EM яв­ля­ет­ся сред­ней ли­ни­ей этого тре­уголь­ни­ка, а зна­чит точка E — се­ре­ди­на сто­ро­ны AB. Что и тре­бо­ва­лось до­ка­зать.

б) Рас­смот­рим 4-уголь­ник MLKN. Из преды­ду­ще­го пунк­та по­лу­чи­ли, что ∠M = 90°, ∠K = 90°, от­ку­да сле­ду­ет, что

То есть у дан­но­го 4-уголь­ни­ка суммы про­ти­во­по­лож­ных углов дают , от­ку­да сле­ду­ет, что во­круг него можно опи­сать окруж­ность. Со­еди­ним точки N и L (пе­ре­се­че­ние с MK в точке F) — по­лу­чим 2 пря­мо­уголь­ных тре­уголь­ни­ка NML и NKL. Тогда центр опи­сан­ной окруж­но­сти лежит на се­ре­ди­не общей ги­по­те­ну­зы NL.

Те­перь за­ме­тим, что тре­уголь­ни­ки MFL и NFK по­доб­ны по 2 углам (∠MFL = ∠NFK, как вер­ти­каль­ные; ∠MLF = ∠NKF, как впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же дугу MN). Тогда

Ана­ло­гич­но тре­уголь­ни­ки NMF и KFL по­доб­ны по 2 углам (∠NFM = ∠KFL, как вер­ти­каль­ные; ∠MNF = ∠FKL, как впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же дугу ML). Тогда

По­де­лим со­от­но­ше­ния друг на друга:

Из по­до­бия тре­уголь­ни­ков NLC и NFK (по 3-м углам) по­лу­чим, что Ана­ло­гич­но из по­до­бия тре­уголь­ни­ков NLB и NFM по­лу­чим, что , от­ку­да сле­ду­ет:

Окон­ча­тель­но по­лу­ча­ем, что

ответ: 5 : 14.

Объяснение:

0,0(0 оценок)
Ответ:
kycokbatona
kycokbatona
31.12.2021 23:52
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота