Старик давно живет на земле и может отличить порядочного человека от продажного. Он видит в своих противников таких людей. Будучи по своей натуре негодяями им легко поверить в подлость другого человека, поэтому старик, притворяясь подлецом, усыпляет их бдительность. Его задача на данном этапе. Дальше ему надо избавится от того, кто может не устоять.. и тут как раз ответ на второй вопрос. Ему старику нечего терять - во-первых уже все погибли, во-вторых, он понимает, что даже, если они и выживут, то жизнь в плену - это и не жизнь вовсе, да и вряд ли их оставят в живых. Жругое дело молодой мальчик (кажется это был его сын? уже не помню) Ему есть что терять, он еще не и не жил по-настоящему, он полон сил и энергии, его жизнь только начинается, жизни ему видится прекрасной и долгой, расстаться с ней теперь, когда все только начинается... Старик помнит себя в молодости, эту жажду жизни, эту надежду на светлые времена, на свершения, которые ждут впереди, на эту всепоглощающую жажду жизни, которая одолевает всех молодых людей, он понимает, что расстаться в ТАКОЙ момент жизни наиболее трудно и, если он умрет первым, его сын может дрогнут и в минуту слабости открыть их святую тайну. 3. Я думаю, что главная мысль не о меде, конечно, она гораздо шире. Она о том, что у каждого человека есть то святое, за что он готов отдать не только свою жизнь, о том, что мудрость приходит к старости - тогда, когда уже жизнь не так важна и силы уже не те, физические силы, зато духовные вырастают до невероятных размеров, что молодость прекрасна своей силой физичекой и духовной тоже, но важно также направить молодого человека в правильное русло, его еще неокрепший ум так неустойчив, что завести его можно куда угодно.
Даны длины сторон треугольника AB=5, AC=11, BC=12. Из вершины A треугольника ABC опущены перпендикуляр AX на биссектрису угла B и перпендикуляр AY на биссектрису внешнего угла C. Найти длину отрезка ХУ.
Данную задачу можно решить двумя 1) геометрическим, 2) векторным.
1) По заданным длинам сторон треугольника АВС находим углы: cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0,018182. A = 1,552614 радиан = 88,9582 градусов. cos В= (АВ²+ВС²-АС²)/(2*АВ*ВС) = 0,4. B = 1,159279 радиан = 66,42182 градусов. cos C= (АC²+ВС²-АВ²)/(2*АC*ВС) = 0,909091. C = 0,4297 радиан = 24,61998 градусов. Заданный отрезок ХУ рассмотрим как основание трапеции ВХУС. ХУ = 12 - 5*cos(B/2)*cos(B/2) + 5*cos(B/2)*sin(B/2)*tg(C/2). Подставив значения функций углов, находим: ХУ = 9.
2) Рассмотрим треугольник АВС в системе координат: точка А - начало, точка С -на оси Ох. С учётом найденных значений углов, определяем координаты вершин: Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 0 0 0,090909 4,999173 11 0 Используем формулу биссектрисы по координатам вершин и длинам сторон: ВХ: ((Уа-Ув + Ус-Ув )/АВ) * Х + ((Хв-Ха + Хв-Хс )/ВС) * У + ((Ха*Ув - Хв*Уа)/АВ + (Хс*Ув - Хв*Ус)/ВС) = 0. Подставив значения, получаем ВХ в виде уравнения с угловым коэффициентом: у(ВХ) = -1,5898732 х + 5,143707. Уравнение перпендикуляра АХ из точки А на эту биссектрису с учётом к(АХ) = -1/к(ВХ) : у(АХ) = 0,628980978х. Находим координаты точки Х как точки пересечения прямых АХ и ВХ x(Х) = 2,318182; у(Х) = 1,4580923. Аналогично находим координаты точки У: x(У) = 10,5; y(У) = -2,2912878. Теперь длина ХУ равна: ХУ = √((x(Х)-x(У))²+(у(Х)-у(У))²) = 9.
Из вершины A треугольника ABC опущены перпендикуляр AX на биссектрису угла B и перпендикуляр AY на биссектрису внешнего угла C.
Найти длину отрезка ХУ.
Данную задачу можно решить двумя
1) геометрическим,
2) векторным.
1) По заданным длинам сторон треугольника АВС находим углы:
cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = 0,018182.
A = 1,552614 радиан = 88,9582 градусов.
cos В= (АВ²+ВС²-АС²)/(2*АВ*ВС) = 0,4.
B = 1,159279 радиан = 66,42182 градусов.
cos C= (АC²+ВС²-АВ²)/(2*АC*ВС) = 0,909091.
C = 0,4297 радиан = 24,61998 градусов.
Заданный отрезок ХУ рассмотрим как основание трапеции ВХУС.
ХУ = 12 - 5*cos(B/2)*cos(B/2) + 5*cos(B/2)*sin(B/2)*tg(C/2).
Подставив значения функций углов, находим: ХУ = 9.
2) Рассмотрим треугольник АВС в системе координат: точка А - начало, точка С -на оси Ох.
С учётом найденных значений углов, определяем координаты вершин:
Точка А Точка В Точка С
Ха Уа Хв Ув Хс Ус
0 0 0,090909 4,999173 11 0
Используем формулу биссектрисы по координатам вершин и длинам сторон: ВХ: ((Уа-Ув + Ус-Ув )/АВ) * Х + ((Хв-Ха + Хв-Хс )/ВС) * У + ((Ха*Ув - Хв*Уа)/АВ + (Хс*Ув - Хв*Ус)/ВС) = 0.
Подставив значения, получаем ВХ в виде уравнения с угловым коэффициентом: у(ВХ) = -1,5898732 х + 5,143707.
Уравнение перпендикуляра АХ из точки А на эту биссектрису с учётом к(АХ) = -1/к(ВХ) : у(АХ) = 0,628980978х.
Находим координаты точки Х как точки пересечения прямых АХ и ВХ
x(Х) = 2,318182; у(Х) = 1,4580923.
Аналогично находим координаты точки У:
x(У) = 10,5; y(У) = -2,2912878.
Теперь длина ХУ равна:
ХУ = √((x(Х)-x(У))²+(у(Х)-у(У))²) = 9.