В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
abogdanov94
abogdanov94
28.12.2021 13:08 •  Геометрия

Свойства арифметических действий. Арифметические действия с натуральным числами. Урок 2
Расстояние между Карагандой и Нур-Султаном 210 км. В одно и то же время навстречу друг другу
выехали из Нур-Султана легковой автомобиль, а из Караганды – автобус. Скорость легкового
автомобиля равна 90 км/ч, а скорость автобуса на 34 км/ч меньше. На каком расстоянии они будут
друг от друга через час?
ответ:
КМ.
Назад

Проверить​

Показать ответ
Ответ:
RownBitter
RownBitter
20.04.2021 00:31

Рассмотрим диагональное сечение пирамиды - равнобедренную трапецию АА С.С. Проведем А.Н 1 АС, тогда А.Н = 0.0 АА, можно найти из ДАА.Н.

2) Диагональ АС квадрата ABCD со стороной 10 см равна 10.2 см. Диагональ квадрата A,B,C,D, со стороной 2 см равна 2√2 см. В равнобедренной трапеции

АН= AC-AC 10√2-22 -4√2 (см).

2 2 3) В ДААН (ZAHA = 90%, АН = 7 см. АН-4√√2 см) гипотенуза АА = = √AA + AH = √7² + (452)³ = 9 (см).

Omeem: 9 CM.

Объяснение:

Дано: ABCDA B.C.D. - правильная усеченная

пирамида. 0.0 - высота,

0.0 = 7 см, AB = 10 см.

А.В, = 2 см.

Haŭmu. AA,

0,0(0 оценок)
Ответ:
aruzhan152
aruzhan152
25.01.2023 09:27

решение на фото ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋


Равнобедренный треугольник АВС вписан в окружность. Основание треугольника АС,  О- центр окружности,
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота