Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
ропчан
12.04.2020 23:37 •
Геометрия
Свойство точки на одинаковых расстояниях от вершин фигуры
Показать ответ
Ответ:
oksakuvp01cde
11.04.2023 13:47
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
0,0
(0 оценок)
Ответ:
круголс
16.10.2022 07:11
Таблица 9.2. Первый признак подобия треугольников.
Первый признак подобия треугольников:
если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
1. ΔABE ~ ΔCDE, так как
∠B = ∠D, а углы при вершине Е равны, как вертикальные.
2. ΔACE ~ ΔEKF, так как
∠С = ∠К = 90° и ∠А = ∠Е
3. ΔВРК ~ ΔВАС, так как
∠Р = ∠А, ∠В - общий.
4. АВ = ВС, треугольник АВС равнобедренный, значит углы при основании равны.
Сумма углов треугольника равна 180°.
∠ВАС = ∠ВСА = (180° - 36°) / 2 = 144° / 2 = 72°
∠DAC = 0,5∠BAC = 0,5 · 72° = 36°
Из ΔADC:
∠ADC = 180° - (∠DAC + ∠DCA) = 180° - (36° + 72°) = 180° - 108° = 72°
ΔADC ~ ΔBAC
5. ΔDBE ~ ΔABC, так как
∠D = ∠А, а ∠B - общий.
6. ΔАВС ~ ΔDBE, так как
∠АСВ = ∠DEB = 90°, а ∠В - общий.
7. ЕМ║PD как основания трапеции.
∠ОМЕ = ∠OPD как накрест лежащие при пересечении ЕМ║PD секущей РМ,
∠ЕОМ = ∠DOP как вертикальные, значит
ΔЕОМ ~ ΔDOP.
8. Сумма острых углов прямоугольного треугольника равна 90°.
Из ΔАВС: ∠А = 90° - ∠С
Из ΔBDC: ∠DBC = 90° - ∠C, значит
∠А = ∠DBC.
А так как и ∠АВС = ∠BDC = 90°, то
ΔАВD ~ ΔBCD.
ΔАВС ~ ΔADB, так как
∠А общий, а ∠AВС = ∠ADB = 90°.
ΔABC ~ ΔBDC, так как
∠С - общий, а ∠АВС = ∠BDC = 90°.
9. ΔABC ~ ΔKDC, так как
∠С - общий, а ∠АВС = ∠KDC = 90°.
10. ΔABF ~ ΔCBK, так как
∠А = ∠С как противолежащие углы параллелограмма,
∠AFB = ∠CKB = 90°.
11. ∠МРЕ = ∠СЕР, а эти углы - внутренние накрест лежащие при пересечении прямых МР и АС секущей РЕ, значит
МР║АС.
ΔВМР ~ ΔВАС, так как
∠ВМР = ∠ВАС как соответственные при МР║АС и секущей АВ, а ∠В - общий.
ΔРЕС ~ ΔВАС, так как
∠РЕС = ∠ВАС, а ∠С - общий.
Из подобия этих треугольников следует, что ∠В = ∠ЕРС.
ΔРЕС ~ ΔВМР, так как
∠РЕС = ∠ВМР (∠РЕС = ∠ВАС, а в свою очередь ∠ВАС = ∠ВМР),
∠В = ∠ЕРС.
12. ΔВРК ~ ΔВАС, так как
∠В - общий, ∠ВРК = ∠ВАС как соответственные при PF║AC, и секущей АВ. (PF║AC как противолежащие стороны параллелограмма).
ΔВРК ~ ΔCFK, так как
∠ВРК = ∠CFK (∠ВРК = ∠ВАС, а ∠ВАС = ∠CFK как противолежащие углы параллелограмма),
углы при вершине К равны как вертикальные.
ΔВАС ~ ΔCFK, так как
∠ВАС = ∠CFK и ∠ВСА = ∠FKC как накрест лежащие при PF║AC, и секущей КС.
13. ΔВАС ~ ΔВКР, так как
∠ВАС = ∠ВКР и ∠В - общий.
ΔВАС ~ ΔENC, так как
∠ВАС = ∠ENC, а ∠С - общий.
Из подобия следует, что ∠АВС = ∠NEC.
ΔВКР ~ ΔENC, так как
∠АВС = ∠NEC и ∠ВКР = ∠ENC.
ΔENC ~ ΔEMP, так как
∠ENC = ∠EMP и углы при вершине Е равны как вертикальные.
ΔВКР ~ ΔEМР, так как
∠ВКР = ∠EМР и углы при вершине Р равны как вертикальные.
ΔВАС ~ ΔЕМР, так как
∠ВАС = ∠ЕМР и ∠АВС = ∠МЕР.
14. ΔАВС ~ ΔBDC, так как
∠ABC = ∠BDC и ∠С - общий.
15. ВС║AD как основания трапеции, АС - секущая, тогда
∠ВСА = ∠DAC как накрест лежащие.
А так как по условию ∠АВС = ∠DCA, то
ΔАВС ~ ΔDCA.
0,0
(0 оценок)
Популярные вопросы: Геометрия
VlEllen
09.08.2020 23:47
Якщо периметр паралелограма = 72 см а одна сторона у 5 разів менше...
NikolaTesla666
03.09.2022 04:53
Сколько прямых можно провести через любые две точки?...
Ilyasha311
08.05.2020 15:09
Маємо точки А(2;3;4), B(2;5;6), С(6;7;4)а) Знайдіть координати точки, симетричної точці В відносно площини xz; б) Обчисліть відстань від точки С до площини ху; в) Обчисліть...
fjdjwjqksnddjj
14.08.2022 09:32
Апофема правильной четырёхугольной пирамиды равна 6 см высота 3^2 найдите а)сторону основания пирамиды? б) площадь боковой поверхности? в)площадь полной поверхности?...
PSV23
11.06.2020 22:49
Дано: ав=21 см. а)ас=5см, вс-? . б)вс на 8см. чем ас, ас-? ,вс-? .в) ас в 3 раза чем вс, ас-? вс-? ...
Аurikа
07.03.2021 04:57
Об‘ємні і фігури є гкометричними тілами, площинами чи лініями?...
VAMPIRKILLER
19.11.2020 12:14
Периметр равночтороннего треугольника равна 66 см. найдите его площадь...
Jlu4shiyFisik
04.01.2023 20:40
Сумма бесконечно убывающей прогрессии равна 16 а сумма квадратов всех ее членов равна 153,6 найдите четвёртый член прогрессии...
Нрататоаооаоп
29.10.2020 01:39
Точка o - центр окружности, описанной около прямоугольника abcd, m € (abc). можно ли провести плоскость через прямую md и точки b и o....
mary556681p04ty3
05.06.2023 18:25
15. Найдите длину окружности, описанной около: а) правильного треугольника; б) квадрата; в) правильного шестиугольника со стороной 1...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Первый признак подобия треугольников:
если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
1. ΔABE ~ ΔCDE, так как
∠B = ∠D, а углы при вершине Е равны, как вертикальные.
2. ΔACE ~ ΔEKF, так как
∠С = ∠К = 90° и ∠А = ∠Е
3. ΔВРК ~ ΔВАС, так как
∠Р = ∠А, ∠В - общий.
4. АВ = ВС, треугольник АВС равнобедренный, значит углы при основании равны.
Сумма углов треугольника равна 180°.
∠ВАС = ∠ВСА = (180° - 36°) / 2 = 144° / 2 = 72°
∠DAC = 0,5∠BAC = 0,5 · 72° = 36°
Из ΔADC:
∠ADC = 180° - (∠DAC + ∠DCA) = 180° - (36° + 72°) = 180° - 108° = 72°
ΔADC ~ ΔBAC
5. ΔDBE ~ ΔABC, так как
∠D = ∠А, а ∠B - общий.
6. ΔАВС ~ ΔDBE, так как
∠АСВ = ∠DEB = 90°, а ∠В - общий.
7. ЕМ║PD как основания трапеции.
∠ОМЕ = ∠OPD как накрест лежащие при пересечении ЕМ║PD секущей РМ,
∠ЕОМ = ∠DOP как вертикальные, значит
ΔЕОМ ~ ΔDOP.
8. Сумма острых углов прямоугольного треугольника равна 90°.
Из ΔАВС: ∠А = 90° - ∠С
Из ΔBDC: ∠DBC = 90° - ∠C, значит
∠А = ∠DBC.
А так как и ∠АВС = ∠BDC = 90°, то
ΔАВD ~ ΔBCD.
ΔАВС ~ ΔADB, так как
∠А общий, а ∠AВС = ∠ADB = 90°.
ΔABC ~ ΔBDC, так как
∠С - общий, а ∠АВС = ∠BDC = 90°.
9. ΔABC ~ ΔKDC, так как
∠С - общий, а ∠АВС = ∠KDC = 90°.
10. ΔABF ~ ΔCBK, так как
∠А = ∠С как противолежащие углы параллелограмма,
∠AFB = ∠CKB = 90°.
11. ∠МРЕ = ∠СЕР, а эти углы - внутренние накрест лежащие при пересечении прямых МР и АС секущей РЕ, значит
МР║АС.
ΔВМР ~ ΔВАС, так как
∠ВМР = ∠ВАС как соответственные при МР║АС и секущей АВ, а ∠В - общий.
ΔРЕС ~ ΔВАС, так как
∠РЕС = ∠ВАС, а ∠С - общий.
Из подобия этих треугольников следует, что ∠В = ∠ЕРС.
ΔРЕС ~ ΔВМР, так как
∠РЕС = ∠ВМР (∠РЕС = ∠ВАС, а в свою очередь ∠ВАС = ∠ВМР),
∠В = ∠ЕРС.
12. ΔВРК ~ ΔВАС, так как
∠В - общий, ∠ВРК = ∠ВАС как соответственные при PF║AC, и секущей АВ. (PF║AC как противолежащие стороны параллелограмма).
ΔВРК ~ ΔCFK, так как
∠ВРК = ∠CFK (∠ВРК = ∠ВАС, а ∠ВАС = ∠CFK как противолежащие углы параллелограмма),
углы при вершине К равны как вертикальные.
ΔВАС ~ ΔCFK, так как
∠ВАС = ∠CFK и ∠ВСА = ∠FKC как накрест лежащие при PF║AC, и секущей КС.
13. ΔВАС ~ ΔВКР, так как
∠ВАС = ∠ВКР и ∠В - общий.
ΔВАС ~ ΔENC, так как
∠ВАС = ∠ENC, а ∠С - общий.
Из подобия следует, что ∠АВС = ∠NEC.
ΔВКР ~ ΔENC, так как
∠АВС = ∠NEC и ∠ВКР = ∠ENC.
ΔENC ~ ΔEMP, так как
∠ENC = ∠EMP и углы при вершине Е равны как вертикальные.
ΔВКР ~ ΔEМР, так как
∠ВКР = ∠EМР и углы при вершине Р равны как вертикальные.
ΔВАС ~ ΔЕМР, так как
∠ВАС = ∠ЕМР и ∠АВС = ∠МЕР.
14. ΔАВС ~ ΔBDC, так как
∠ABC = ∠BDC и ∠С - общий.
15. ВС║AD как основания трапеции, АС - секущая, тогда
∠ВСА = ∠DAC как накрест лежащие.
А так как по условию ∠АВС = ∠DCA, то
ΔАВС ~ ΔDCA.