Обозначим вершины ромба АВСД, его высоту - ВН, точку пересечения диагоналей - О.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Отношение катета и гипотенузы ∆ АВО 3:5, треугольник египетский, и АО=4 ( по т. Пифагора результат будет тем же).
Высоту ромба найдем из формулы его площади.
S=a•h
h=S:a
По другой формуле площадь ромба равна половине произведения его диагоналей.
S=6•8:2=24 (см²)
ВН=S:AD=4,8 (см)
Обозначим вершины ромба АВСД, его высоту - ВН, точку пересечения диагоналей - О.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Отношение катета и гипотенузы ∆ АВО 3:5, треугольник египетский, и АО=4 ( по т. Пифагора результат будет тем же).
Высоту ромба найдем из формулы его площади.
S=a•h
h=S:a
По другой формуле площадь ромба равна половине произведения его диагоналей.
S=6•8:2=24 (см²)
ВН=S:AD=4,8 (см)