Половина высоты относится к радиусу вписанной окружности основания как tg(a) tg(a) = h/2/r r = h/(2tg(a)) В равностороннем треугольнике центр вписанной окружности - это точка пересечения медиан, биссектрис и высот. Медианы делятся точкой пересечения как 2 к 1 начиная от угла, и которого построена медиана. Поэтому полная длина медианы равна 3r Рассмотрим прямоугольный треугольник, равный половине основания. Обозначим сторону основания x. Тогда по Пифагору x² = (x/2)² + (3r)² 3/4*x² = 9r² x² = 12r² x = 2√3*r = 2√3*h/(2tg(a)) = h√3/tg(a) Площадь основания S = 1/2*x*3r = 1/2*h√3/tg(a)*h/(2tg(a)) = √3/4*(h/tg(a))² И объём V = 1/3*S*h = 1/3*√3/4*(h/tg(a))²*h = 1/(4√3)*h³/(tg(a))² на картинке слева сечение пирамиды в вертикальной плоскости, справа - основание.
tg(a) = h/2/r
r = h/(2tg(a))
В равностороннем треугольнике центр вписанной окружности - это точка пересечения медиан, биссектрис и высот. Медианы делятся точкой пересечения как 2 к 1 начиная от угла, и которого построена медиана. Поэтому полная длина медианы равна 3r
Рассмотрим прямоугольный треугольник, равный половине основания. Обозначим сторону основания x. Тогда по Пифагору
x² = (x/2)² + (3r)²
3/4*x² = 9r²
x² = 12r²
x = 2√3*r = 2√3*h/(2tg(a)) = h√3/tg(a)
Площадь основания
S = 1/2*x*3r = 1/2*h√3/tg(a)*h/(2tg(a)) = √3/4*(h/tg(a))²
И объём
V = 1/3*S*h = 1/3*√3/4*(h/tg(a))²*h = 1/(4√3)*h³/(tg(a))²
на картинке слева сечение пирамиды в вертикальной плоскости, справа - основание.
216см2
Объяснение:
Центр окружности, описанной около равнобедренной трапеции, который находится на большем основании, делит его на две равные части:
AO=OD=R=1/2×AD=1/2×26=13 см
2. В равнобедренной трапеции AE и FD можно найти, зная основания:
AE=FD=(AD−BC)/2=(26-10)/2=8
Вычисляем EO и OF:
EO=OF=R−AE=13−8=5 см
3. Так как ΔEBO — прямоугольный, то высоту трапеции BE можно найти по теореме Пифагора:
BE=R2−EO2−−−−−−−−√=132−52−−−−−−−√=169−25−−−−−−−√=144−−√=12 см
4. Вычисляем площадь трапеции:
S=AD+BC2×BE=(26+10)/2×12=18×12=216см2