1) середина отрезка b: ставишь установочной (острой) ножкой на начало отрезка, пишущей на конец отрезка, рисуешь полуокружность. меняешь ножки местами, рисуешь еще одну полуокружность - получаешь 2 точки пересечения полуокружностей: одну снизу отрезка, другую сверху. Соединяешь эти точки. Линия которая образуется при соединении делит отрезок b пополам.
2) a+b чертишь прямую, циркулем отмеряешь длину отрезка a (одну ножку ставишь на начало, другую на конец), отмечаешь на прямой любую точку, на нее ставишь установочную ножку, а другой отсекаешь замеренную длину отрезка. аналогично замеряешь и отсекаешь длину отрезка b, только начинаешь уже от конца отрезка a - получаем a+b
3) b-a аналогично п.2 отсекаешь на прямой отрезок b, теперь от его конца (тот, который справа) влево отмеряешь отрезок a. получаем b-a
а) Обозначим за O - центр описанной окружности. Тогда OC=OB=OA как радиусы этой окружности. Из условия O - проекция точки S на плоскость основания, а значит ∠SOC=∠SOB=∠SOA=90°; Рассмотрим три прямоугольных треугольника: SOA, SOB, SOC: SO - их общая сторона, OA=OB=OC; Значит, они равны и, в частности, SA=SB=SC, что и требовалось.
б) Поскольку PQ параллельна плоскости основания и лежит в одной плоскости с CB, то она параллельна CB. Так как Q - середина SB, то PQ - средняя линия треугольника SCB. Отсюда следует, что площади треугольников SPQ и SCB относятся соответственно как 1:4 (4 - квадрат коэффициента подобия)
Теперь рассмотрим сами пирамиды. Пусть SPQ и SCB - их основания. Значит у этих пирамид относительно этого основания общая высота. Следовательно, объемы пирамид относятся как площади соответствующих оснований, т.е. 1:4.
см. рисунок
Объяснение:
1) середина отрезка b: ставишь установочной (острой) ножкой на начало отрезка, пишущей на конец отрезка, рисуешь полуокружность. меняешь ножки местами, рисуешь еще одну полуокружность - получаешь 2 точки пересечения полуокружностей: одну снизу отрезка, другую сверху. Соединяешь эти точки. Линия которая образуется при соединении делит отрезок b пополам.
2) a+b чертишь прямую, циркулем отмеряешь длину отрезка a (одну ножку ставишь на начало, другую на конец), отмечаешь на прямой любую точку, на нее ставишь установочную ножку, а другой отсекаешь замеренную длину отрезка. аналогично замеряешь и отсекаешь длину отрезка b, только начинаешь уже от конца отрезка a - получаем a+b
3) b-a аналогично п.2 отсекаешь на прямой отрезок b, теперь от его конца (тот, который справа) влево отмеряешь отрезок a. получаем b-a
а) Обозначим за O - центр описанной окружности. Тогда OC=OB=OA как радиусы этой окружности. Из условия O - проекция точки S на плоскость основания, а значит ∠SOC=∠SOB=∠SOA=90°; Рассмотрим три прямоугольных треугольника: SOA, SOB, SOC: SO - их общая сторона, OA=OB=OC; Значит, они равны и, в частности, SA=SB=SC, что и требовалось.
б) Поскольку PQ параллельна плоскости основания и лежит в одной плоскости с CB, то она параллельна CB. Так как Q - середина SB, то PQ - средняя линия треугольника SCB. Отсюда следует, что площади треугольников SPQ и SCB относятся соответственно как 1:4 (4 - квадрат коэффициента подобия)
Теперь рассмотрим сами пирамиды. Пусть SPQ и SCB - их основания. Значит у этих пирамид относительно этого основания общая высота. Следовательно, объемы пирамид относятся как площади соответствующих оснований, т.е. 1:4.
Заметим, что 9²+(2√6)²=(√105)², значит, треугольник ABC - прямоугольный. Объем пирамиды SABC: V=SH/3=((9*2√6)/2)*10/3=30√6
Искомый объем в четыре раза меньше, т.е. равен (15√6)/2