Ть дуже
1. доведіть що периметр трикутника сторони якого є середніми лініями трикутника авс дорівнює половинв периметра трикутника авс
2.доведіть що висоті ам трикутника авс перпендикулярна до його середньої лінії яка сполучає середини сторін ав і ас
3.середня лінія рівнобедреного трикутника паралельна основі дорівнює 6 см. знайдіть сторони даного трикутника якщо його периметр дорівнює 46 см .
хоча б якусь
По свойству отрезков касательных, проведенных из одной точки к одной окружности МК=МN₁; NN₁=NE₁=12; EE₁=EK; где N₁ и E₁ - точки касания окружности с гипотенузой МN и катетом NЕ соответственно.
EK=ЕE₁ =ОК =х - радиус, подлежащий определению. Из данного в условии прямоугольного треугольника свяжем теоремой Пифагора гипотенузу и катеты. (МN=8+12=20; МЕ=8+х; NE=12+х)
МN²=МЕ²+NE²; 20²=(8+х)²+(12+х)²; 400=64+16х+х²+144+24х+х²;
2х²+40х-192=0, сократим на два обе части уравнения. х²+20х-96=0, ПО теореме, обратной теореме Виета х=-24- не подходит по смыслу задачи, не может радиус быть отрицательным. х=4
ответ Радиус равен 4см
По свойству отрезков касательных, проведенных из одной точки к одной окружности МК=МN₁; NN₁=NE₁=12; EE₁=EK; где N₁ и E₁ - точки касания окружности с гипотенузой МN и катетом NЕ соответственно.
EK=ЕE₁ =ОК =х - радиус, подлежащий определению. Из данного в условии прямоугольного треугольника свяжем теоремой Пифагора гипотенузу и катеты. (МN=8+12=20; МЕ=8+х; NE=12+х)
МN²=МЕ²+NE²; 20²=(8+х)²+(12+х)²; 400=64+16х+х²+144+24х+х²;
2х²+40х-192=0, сократим на два обе части уравнения. х²+20х-96=0, ПО теореме, обратной теореме Виета х=-24- не подходит по смыслу задачи, не может радиус быть отрицательным. х=4
ответ Радиус равен 4см