1. Рассмотрим треуг-ик apf. Он равнобедренный по условию, значит, углы при его основании af равны (<paf=<pfa). Пусть этот неизвестный угол будет х, тогда <bac=x+x=2x, <paf=<pfa=x, <apf=180-(<paf+<pfa)=180-2x. Тогда <bpf=180-<apf=180-(180-2x)=2x. То есть мы видим, что <bac=<bpf=2х. Это соответственные углы при пересечении двух прямых ac и pf секущей ab. Значит, прямые ас и pf параллельны (признак параллельности двух прямых). 2. Рассмотрим треугольники abc и pbf. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого: - угол b - общий; - <bac=<bpf как показано выше. Для подобных треугольников можно записать отношение сходственных сторон: pf : ac = bf : bc = 2 : (2+1) = 2 : 3, отсюда pf = ac*2:3=6*2:3=4 см
ответ: 12.
Приведем основное свойство медианы прямоугольного треугольника:
Медиана, проведенная из вершины прямого угла треугольника к гипотенузе, равна половине гипотенузы.
Из этого мы выводим, что если мы умножим известную нам медиану на 2, то получим гипотенузу:
2,5 * 2 = 5.
Итак, у нас египетский треугольник (треугольник со сторонами 3, 4, 5), но все-таки проверим, чему равен второй катет по теореме Пифагора:
√(5² - 4²) = √(25 - 16) = √9 =3. Все сошлось!
Остался самый последний шаг:
P (треуг.) = a + b + c = 3 + 4 + 5 = 12.
Вот и все! Удачи!
<bac=x+x=2x,
<paf=<pfa=x,
<apf=180-(<paf+<pfa)=180-2x.
Тогда <bpf=180-<apf=180-(180-2x)=2x.
То есть мы видим, что <bac=<bpf=2х. Это соответственные углы при пересечении двух прямых ac и pf секущей ab. Значит, прямые ас и pf параллельны (признак параллельности двух прямых).
2. Рассмотрим треугольники abc и pbf. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого:
- угол b - общий;
- <bac=<bpf как показано выше.
Для подобных треугольников можно записать отношение сходственных сторон:
pf : ac = bf : bc = 2 : (2+1) = 2 : 3, отсюда
pf = ac*2:3=6*2:3=4 см