Даны вершины треугольника: А(1;-3;4), В(2;-2;5), C(3;1;3).
Находим векторы и их модули.
АВ = (1; 1; 1), |AB| = √(1² + 1² + 1²) = √3.
BC = (1; 3; -2), |AB| = √(1² + 3² + (-2)²) = √14.
АC = (2; 4; -1), |AB| = √(2² + 4² + (-1)²) = √21.
Косинусы углов находим по формуле:
cos A = (b² + c² - a²)/(2bc).
Вот результаты расчёта:
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
3,741657387 4,582575695 1,732050808 5,028141945 10,05628389 3,082207001
14 21 3
1,286484558 0,44556625 3,296091137 1,889365914 9,5 3,082207001
cos A = 0,629941 cos B = -0,308607 cos С = 0,933139
Аrad = 0,889319 Brad = 1,884524 Сrad = 0,367749
Аgr = 50,954246 Bgr = 107,975284 Сgr = 21,07047.
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°
Даны вершины треугольника: А(1;-3;4), В(2;-2;5), C(3;1;3).
Находим векторы и их модули.
АВ = (1; 1; 1), |AB| = √(1² + 1² + 1²) = √3.
BC = (1; 3; -2), |AB| = √(1² + 3² + (-2)²) = √14.
АC = (2; 4; -1), |AB| = √(2² + 4² + (-1)²) = √21.
Косинусы углов находим по формуле:
cos A = (b² + c² - a²)/(2bc).
Вот результаты расчёта:
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
3,741657387 4,582575695 1,732050808 5,028141945 10,05628389 3,082207001
14 21 3
1,286484558 0,44556625 3,296091137 1,889365914 9,5 3,082207001
cos A = 0,629941 cos B = -0,308607 cos С = 0,933139
Аrad = 0,889319 Brad = 1,884524 Сrad = 0,367749
Аgr = 50,954246 Bgr = 107,975284 Сgr = 21,07047.
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°