Сумма смежных углов равна 180 градусов. Соответственно, угол В = 30 градусов. Зная, что сумма острых углов прямоугольного треугольника равна 90 градусов, находим, что угол А равен 60 градусов. Биссектриса делит угол на две равные части, значит угол А делится на два угла по 30 градусов. Так же острый угол находится в треугольнике АСD. Опять же, зная, что сумма острых углов прямоугольного треугольника равна 90 градусов, находим, что угол D равен 60 градусов. Другой же угол не является острым, но его тоже можно найти (как смежные углы) и он будет равен D = 120 градусов
Сумма смежных углов равна 180 градусов. Соответственно, угол В = 30 градусов. Зная, что сумма острых углов прямоугольного треугольника равна 90 градусов, находим, что угол А равен 60 градусов. Биссектриса делит угол на две равные части, значит угол А делится на два угла по 30 градусов. Так же острый угол находится в треугольнике АСD. Опять же, зная, что сумма острых углов прямоугольного треугольника равна 90 градусов, находим, что угол D равен 60 градусов. Другой же угол не является острым, но его тоже можно найти (как смежные углы) и он будет равен D = 120 градусов
Объяснение:
*объяснения понять чуть проще, если сделать рисунки к каждой из задач*
1. ответ: 60°.
∠BAC=∠BCA=80° (как углы при основании равнобедренного треугольника)
∠DAC=1/2∠BAC=80°/2=40° (т. к. АD - биссектриса)
∠ADC=180°-(∠DCA+∠DAC)=180°-(80°+40°)=180°-120°=60° (сумма углов треугольника равна 180°)
2. ответ: 28°.
Т. к. сумма углов треугольника равна 180°, то третий угол равен 180°-71°-81°=28°.
3. ответ: 9°.
Сумма углов треугольника равна 180°, углы при основании равнобедренного треугольника равны. Значит, ∠С = (180°-162°)/2 = 18°/2 = 9°.