Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
3.Высота из вершины малого основания в равнобедренной трапеции делит большое основание на отрезки, меньший из которых равен полуразности оснований(то есть (a - b)/2, где а и b - большое и малое основания)откуда больший равен полусумме оснований(потому что а - (a - b)/2 = (a + b)/2)То есть больший отрезок равен средней линии. треугольник, образованный этим отрезком, высотой и диагональю - это прямоугольный треугольник с углом 45 градусов (так задано).То есть он равнобедренный.То есть средняя линяя равна высоте. цифры тогда сами подставите)
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.