Tabcd - пирамида. основание abcd - прямоугольник. ab = 3; ad=4; to - высота мирамиды, to = 6. найдите расстояние и угол между прямыми ac и td. o - точка пересечения ac и bo
Центр шара лежит в точке, равноудалённой от сторон треугольника, образуя вместе с вершинами треугольника треугольную пирамиду с равными апофемами. апофемы равны, значит основание высоты пирамиды лежит в центре вписанной в основание пирамиды окружности. площадь основания можно вычислить по формуле герона: s=√(p(p-a)(p-b)(p- где р=(a+b+c)/2. подставив числовые значения a=13, b=14 и с=15 получим s=84 см. радиус вписанной окружности: r=s/p=2s/(a+b+c). r=2·84/(13+14+15)=4 см. высота пирамиды, проведённая к данному треугольнику - это расстояние от центра шара до треугольника. в прямоугольном треугольнике, образованном высотой пирамиды, апофемой и найденным радиусом, высота по теореме пифагора равна: h=√(l²-r²), где l- апофема пирамиды (равна радиусу шара). h=√(5²-4²)=3 см - это ответ.
Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.
Найдём все расстояния между точками:
АВ = sqrt((2 - (-1)) ^ 2 + (7 - 4) ^ 2) = sqrt(9 + 9) = 3sqrt2
BC = sqrt((1 - (-1)) ^ 2 + (4 - 2) ^ 2) = sqrt(4 + 4) = 2sqrt2
AC = sqrt((2 - 1) ^ 2 + (7 - 2) ^ 2) = sqrt(1 + 25) = sqrt26
Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.