Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Примем длину ребра куба равной 70 (для кратности между 14 и 5).
Так как точки М и N, принадлежат плоскости АВС, которая параллельна заданной плоскости А1В1С1, то угол между плоскостями MNK и A1B1C1 равен углу между плоскостями MNK и ABC.
Помести куб в систему координат точкой А в начало,ребром АД по оси Ох, ребром АВ по оси Оу.
В соответствии с заданием определим координаты точек.
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в данное выражение и сократив на 35, получаем уравнение плоскости MNК: 2x + 14y + 5z - 70 = 0.
Угол между плоскостями определяем через его косинус:
cos α = |A₁·A₂ + B₁·B₂ + C₁·C₂|
√(A₁² + B₁² + C₁²)*√(A₂² + B₂² + C₂²) = 1/3.
α = arc cos(1/3) = 1,23096 радиан или 70,529 градуса.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
Примем длину ребра куба равной 70 (для кратности между 14 и 5).
Так как точки М и N, принадлежат плоскости АВС, которая параллельна заданной плоскости А1В1С1, то угол между плоскостями MNK и A1B1C1 равен углу между плоскостями MNK и ABC.
Помести куб в систему координат точкой А в начало,ребром АД по оси Ох, ребром АВ по оси Оу.
В соответствии с заданием определим координаты точек.
А(0; 0; 0), В(0; 70; 0), С(70; 70; 0). Уравнение АВС: z = 0.
M(35; 0; 0), N(0; 5; 0), K(0; 0; 14).
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в данное выражение и сократив на 35, получаем уравнение плоскости MNК: 2x + 14y + 5z - 70 = 0.
Угол между плоскостями определяем через его косинус:
cos α = |A₁·A₂ + B₁·B₂ + C₁·C₂|
√(A₁² + B₁² + C₁²)*√(A₂² + B₂² + C₂²) = 1/3.
α = arc cos(1/3) = 1,23096 радиан или 70,529 градуса.