Пусть АВСД четырёхугольник, вписанный в окружность,
<A : < B : < C = 2 : 6 : 7. Примем часть за х. То есть
<A = 2 * х; < B = 6 * х; < C = 7 * х.
Как известно в четырёхугольнике, вписанном в окружность сумма противоположных углов равна 180°, то есть <A + < C = 180°, <B + <Д = 180°.
<A + < C = 2 * х + 7 * х = 9 * х = 180°. х = 180°/9 = 20°.
<A = 2 * х = 2 * 20° = 40°;
< B = 6 * х = 6 * 20° = 120°;
< C = 7 * х = 7 * 20° = 140°;
< Д = 180° - < В = 180° - 120° = 60°.
Если в основании пирамиды лежит прямоугольный треугольник с катетом 6 см и гипотенузой 12 см, то острый угол против катета в 6 см равен 30 градусов.
Второй катет равен 6/tg 30° = 6√3 см.
Площадь основания So = (1/2)*6*6√3 = 18√3 см².
Если все боковые ребра наклонены под углом 30º, то проекции этих рёбер на основание - это радиусы R описанной около треугольника основания окружности.
R = c/2 = 12/2 = 6 см.
Отсюда находим высоту Н пирамиды.
H = R*tg 30° = 6*(√3/3) = 2√3 см.
Теперь получаем ответ:
V = (1/3)SoH = (1/3)*18√3 *2√3 = 36 см³.
.
Пусть АВСД четырёхугольник, вписанный в окружность,
<A : < B : < C = 2 : 6 : 7. Примем часть за х. То есть
<A = 2 * х; < B = 6 * х; < C = 7 * х.
Как известно в четырёхугольнике, вписанном в окружность сумма противоположных углов равна 180°, то есть <A + < C = 180°, <B + <Д = 180°.
<A + < C = 2 * х + 7 * х = 9 * х = 180°. х = 180°/9 = 20°.
<A = 2 * х = 2 * 20° = 40°;
< B = 6 * х = 6 * 20° = 120°;
< C = 7 * х = 7 * 20° = 140°;
< Д = 180° - < В = 180° - 120° = 60°.
Если в основании пирамиды лежит прямоугольный треугольник с катетом 6 см и гипотенузой 12 см, то острый угол против катета в 6 см равен 30 градусов.
Второй катет равен 6/tg 30° = 6√3 см.
Площадь основания So = (1/2)*6*6√3 = 18√3 см².
Если все боковые ребра наклонены под углом 30º, то проекции этих рёбер на основание - это радиусы R описанной около треугольника основания окружности.
R = c/2 = 12/2 = 6 см.
Отсюда находим высоту Н пирамиды.
H = R*tg 30° = 6*(√3/3) = 2√3 см.
Теперь получаем ответ:
V = (1/3)SoH = (1/3)*18√3 *2√3 = 36 см³.
.