так прямоугольник ABCD окружность проходящую через точки A и B и касается прямой CD и пересекает диагональ AC в точке P Найдите длину отрезка db если AB равно 3 AB равно 9 корней из 10В треугольнике ABC проведена медиана BM и CN пересекающиеся в точке M середина отрезка BM arti середина cmb известно что площадь треугольника равна 15 Чему равна площадь треугольника ABC
угол МОК= Углу НОК= 120 град/2=60 град
синус угла МОК= МК/ОК
синус 60 град=МК/12
(корнеь 3)/2=МК/12
МК=6 (корень3)
МК=КН=6 (корень3)
2. АО=ОС, т. к. диагонали ромба пересекаются и точкой пересечения делятся пополам. Так же Диагонали пересекаются под прямым углом. Значит АО - радиус окружности и угол АОВ= 90 град. Следовательно ВД - касательная
В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3
Рассмотрим ∆ AED (угол DAE = 90°):
tg AED = AD / AE = 4 / 3√3 = 4√3 / 9
ОТВЕТ: 4√3 / 9