Сторона АС равна 140-34-50=56дм. Найдем площадь треугольника АВС по Герону: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника. В нашем случае S=√(70*36*20*14)=√(14*100*36*14)=840дм². С другой стороны, Sabc=(1/2)*BD*AC, отсюда BD=2S/АС или BD=2*840/56=30дм. ответ: BD=30дм.
Вариант решения по Пифагору: АС=140-84=56дм. По Пифагору: Из треугольника АВD: BD²=34²-x². Из треугольника ВDC: BD²=50²-(56-x)². 34²-x²=50²-(56-x)². Отсюда 112х=1156-2500+3136. х=16. По Пифагору из треугольника АВD: BD=√(34²-16²)=30. ответ: BD=30дм.
1)Решение 1) угол АОВ = 180 - 60 =120 градусов 2) Проведём биссектрису СК. Она пройджёт через точку О и будет одновременно медианой то есть АК =6/2=3см и высотой, то есть угол АКО =90 градусов и угол АОК = 120/2 =60 градусов 3) Из тр-ка АКО имеем АО = АК/ sin60 = 3 : ( √3/2) = 2√3 4) По свойству медиан АА1 = 1,5АО =1,5 *2√3 =3√3 ответ АА1 =3√3
2)пусть одна сторона-х, тогда другая- 13-х, по теореме косинусов сост. уравнение: x^2+(13-x)^2-2*x*(13-x)*cos60=49 x^2+169-26x+x^2-13x+x^2=49 3x^2-39x+120=0 x^2-13x+40=0 D=169-160=9 x1=(13+3)\2=8 x2=(13-3)\2=5 х=8-одна боковая сторона, 13-8=5-другая или наоборот х=5, 13-5=8.
Найдем площадь треугольника АВС по Герону:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны треугольника.
В нашем случае S=√(70*36*20*14)=√(14*100*36*14)=840дм².
С другой стороны, Sabc=(1/2)*BD*AC, отсюда
BD=2S/АС или BD=2*840/56=30дм.
ответ: BD=30дм.
Вариант решения по Пифагору:
АС=140-84=56дм.
По Пифагору:
Из треугольника АВD: BD²=34²-x².
Из треугольника ВDC: BD²=50²-(56-x)².
34²-x²=50²-(56-x)². Отсюда 112х=1156-2500+3136.
х=16.
По Пифагору из треугольника АВD: BD=√(34²-16²)=30.
ответ: BD=30дм.
1) угол АОВ = 180 - 60 =120 градусов
2) Проведём биссектрису СК. Она пройджёт через точку О и будет одновременно медианой
то есть АК =6/2=3см и высотой, то есть угол АКО =90 градусов и угол АОК = 120/2 =60 градусов
3) Из тр-ка АКО имеем АО = АК/ sin60 = 3 : ( √3/2) = 2√3
4) По свойству медиан АА1 = 1,5АО =1,5 *2√3 =3√3
ответ АА1 =3√3
2)пусть одна сторона-х, тогда другая- 13-х, по теореме косинусов сост. уравнение:
x^2+(13-x)^2-2*x*(13-x)*cos60=49
x^2+169-26x+x^2-13x+x^2=49
3x^2-39x+120=0
x^2-13x+40=0
D=169-160=9 x1=(13+3)\2=8 x2=(13-3)\2=5
х=8-одна боковая сторона, 13-8=5-другая или наоборот х=5, 13-5=8.