Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4
Медиана AM = 18,3 см.
Объяснение:
По условию ΔABC равнобедренный. AB = AC.
AM медиана, отрезок, проведенный из вершины треугольника на середину противолежащей стороны. BM = MC.
Медиана в равнобедренном треугольнике является осью симметрии треугольника и делит его на две равных части.
Периметр ΔABC P₁ = AB + BC + AC = 155 см. Тогда сумма отрезков AB + BM = P₁ / 2 = 155 см / 2 = 77,5 см.
По условию периметр ΔABM P₂ = 95,8 см;
P₂= AB + BM + AM = 77,5 см + AM = 95,8 см;
AM = 95,8 см - 77,5 см = 18,3 см.
AM = 18,3 см.
4 см
Объяснение:
Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4